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PREFACE

The work described in this report was authorized under Contract
No. DAAAL15-85-K-0012. This work was started in July 1985 and completed
in December 1988.
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not constitute an official endorsement of any commercial products. This
report may not be cited for purposes of advertisement.

Reproduction of this dccument in whole or in part is prohibited
except with permission of the Comxmander, U.S. Army Chemical Research, Develop-
ment and Engineering Center, AT..:© SMCZR-SPS-T, Aberdeen Proving Ground,
Meryland 21010-5423. However, thc Defense Technical Information Center and
the National Technical Information “arvice are authorized to reproduce che
document for U.S. Government putrpos-=s.
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INTERIOR FLUID DYNAMICS
OF LIQUID-FILLED PROJECTILES

1. Research Objectives

The project “‘Interior Fluid Dynamics of Liquid-Filled Projectiles’ under Contract
DAAA15-85-K-0012 of the Depariment of the Army, AMCCOM, was originally planned as a
three-year effort with the working period 07/01/85 - 06/30/88 and Thorwald Herbert as principal
investigator. The working period was extended at no cost until 12/31/88.

A detailed description of the rescarch objectives has been given in scction 2.2 of the original
proposal. In summary, the rescarch aimed at understanding the origin of the flight instability of
projcctiles with liquid payloads and at cstimating and accurately calculating the liquid-induced
moments to obtain the data nccessary for the design of future projectiles. This cffort was dircctly
related to the experimental studies conducted at CRDEC and to numerical studics performed at
BRL. In detail, the work under this contract was planned to extend our carlicr analysis in three
dircctions: |
(1) Fully cxploit the poiential of the lincarized solution with regard to yaw moment, pitch

moment, and temperature cffects on the viscosity. Extend the solution to unsteady (c.g.

spin-up) situations.

(2) Perform a perturbation analysis of the nonlinear cffects that produce radial and azimuthal
velocity components and modify the axial component. Study the effect of the cylinder end
walls on the flow ficld and the pressure. Investigate the onset and nature of cellular motions
at higher Reynolds numbers.

(3) Devclop a highly cfficient computer code for calculating the steady flow ficld and .iquid
moments on the basis of the Navier-Stokes ecquations. Implement spectral approximations in
all spacc variables. Extend the analysis to unsteady problems (spin-up, spin-down, yaw-angle
growth). Incorporatc the flow computations into an cxisting six-degree-of-freedom code.

As will be discussed in the next section, most of these goals have becn reached. Various
other results have been achieved that were not anticipated at initiation of this contract. The work
on unsteady aspects of the problem was initiated but not finished within the period of this con-
tract.

Owing to Th, Herbert’s accepting a new position at The Ohio State University (OSU) begio
ning with the academic yecar 1987/88 on October 1, 1987, only a part of the program was con-
ducted at the Virginia Peiytechnic Institute and State University (VPI). A part of the remaining
funds was madc available through a subcontract to The Ohio State University to continue the
rescarch. The rescarch equipment acquired within this contract remained at VPI. The lack of this
cquipment required time-consuming modifications of our research codes and caused delays in the
reseurch program.
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2. Research Achievements

After initiation of this contract, work was simultancously conducted on all three topics.
Rapid progress was made until summer 1987 in closc cooperation of the principal investigator
with Rihud Li who worked as a postdoctoral associate, At this time, Dr. Li accepted a similar
position at the University of Arizona since the funds available at OSU were insufficient for his
remaining in the program. At OSU, M. Selmi continued Dr. Li's work after some training period.

Aost of the results of our rescarch have been reported in publications (sec scction 4) and
more detailed papers are in preparation.  Therefore, we can restrict this report to a brief overview
of the achicvements.

Gur carlicr analytical studics for cylinders of large aspect ratio (Herbert 1986) were cxtended
to the nonlincar problem by usc of a perturbation method. The small expansion parameter is
€ = 1sin0, where T = QJ/w, Q the nutation rate, ® the spin rate, and 0 the angle between the two
axcs of rotation. The solution up to sccond order is obtained in closed form, while the third-order
contributions arc dctermined numerically. Higher-order terms are small such that good cstimates
of all liguid moments can be obtained from the closed-form approximation. The cffect of finite
aspect ratios has been evaluated by comparison with results of the spectral code (sce below). This
cvaluation and the comparison of flight simulations based on analytical and numcrical results
shows that the cstimates are conscrvative and thercfore uscful for preliminary design studics.
Recently, the analysis has been extended to obtain results for partially filled cylinders with an
axisymmciric void, for cylinders with a central rod, and for the casc of two immiscible fluids of
different viscositics and densitics scparated by a cylindrical interface.

Various studics have been performed to evaluate existing Navier-Stokes solvers (Vaughn et
al. 1985a, Strikwerda & Nagel 1985). These cfforts were kindly supported by M. Nusca, BRL,
who provided data for comparison and the latest version of the Sandia code. The previous codes
arc primarily based on finite-difference approximations with relatively coarse grid and were
designed without insight into the nature of the fluid motion. As a result, these codes provide solu-
tions only for rclatively small Reynolds numbers and have to compromise between numerical
approximation and computational expense. Guided by our analytical work, we have directed our
cfforts towaid tailoring the Navier-Stokes code to the nature of the fluid motion and obtaining
more accurate moments from a given numerical approximation for the flow fields.

Previous numerical work determined the moments from surface integrals over normal
stresses and shear stresses which involve the pressure and velocity gradients at the boundary.
However, boundary quantitics are obtained with numerical crrors typically much larger than the
vclocity in the interior. We have developed a method to determine the moments by intcgration
over the volume of the cylinder. This intcgration requircs only the knowledge of the fundamental
Fouricr component of the axial velocity and the mecan (streaming) component of the azimuthal
velocity, The pressure and velocity gradients are climinated from this formulation. In comparison
with the traditional surface approach, the smoothing by integration in three space dircctions and
the use of well-approximated dita provides moments of superior accuracy with the same original
data, e with the same amount of computer time. The mcthod is generic in *he sensc that it is
vaiid not onty for cylinders but as well for arbitrary closed containers. Moi.  or, the method is
not only usetul for purcly numerical work but especially for perturbation approaches that provide

the tundamentud Fouricr component of the axial veiocity at first order and the mean component of

e azimethind velocity at second order.
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The design of the spcc‘lml code for solving the Navier-Stokes cquations was guided by
analytical studics, the anticipated use for flight simulations, and the desire to keep the code open
for extension to unstcady problems. The latter demand prevented the use of artificial (non-
physical) time dependence to obtain the steady solution. Since the structure of ihe equations
clearly exhibits the dominance of the lincar terms at the usually small valucs of €, a good approxi-
mation for the solution can be obtained by solving the lincar system. This solution is improved
by itcration to account for nonlincarity. Besides the lincarization in €, a second type of lincariza-
tion can be made in the velocity deviation from rigid-body motion. A third type of lincarization is
about a known solution at ncighboring parameters. While the second type is uscd in absence of
prior knowledge, the third type is especially suited for continuation of the solution and moment
calculations in flight simulations which arc characterized by a slow variation of the parametcrs
along the trajectory.

The utility of the spectral code for fundamental studies of the fluid motion (Herbert & Li
1987) and its cfficiency for flight simulations (Herbert 1988) has been verified. The flight simula-
tions were based on a slightly modificd version of the code developed by Vaughn ct al. (1985b).
More recent work was dedicated to the range of high Reynolds numbers and to the viscous cffects
on the resonance with inertial waves. For sufficiently small € the spectral soluiions of the non-
lincar problem agree well with the results of Hall et al. (1987) obtained by spatial eigenfunction
cxpansions of the lincarized problem.

The cigenfunction expansions used by Hall, Sedney & Gerber (1987) require numerical
detecrmination of cigenvalues and cigenfunctions from an eigenvalue problem for a system of ordi-
nary differential cquations.  We have developed an equivalent but much simplei sct of equations
that pcrmits closed-form solutions for the spatial cigenfunctions (Li & Herbert 1988) and thus
avoids the high computational cxpense for gencrating numerical solutions. The cigenvalucs are
obtained as solutions of a transcendental cquation. Our formulation of the problem cicarly reveals
the structure of the eigenvalue spectrum and explains the empirical results of Hall et al. on the
grouping of the cigenfunctions. The cigenvalues have been generated for Reynolds numbers as
high as 10°. The numerical problems of using modified Bessel functions of farge complex argu-
ments at these high Reynolds numbers are not yet fully overcome.

Besides solving the new formulation in terms of cigenfunction expansions, we apply spectral
cxpansions in Chebyshev serics. The otherwise two-step solution procedure (gencration of func-
tions, solving for the cxpansion coefficients) reduces in this case to a single step.  Although this
code has not yet matured for routine applications, experience in the range up to Reynolds numbers
of the order of 10° is very encouraging.

Various studics have been performed to adapt the existing analytical and numerical methods
to the unsteady problem. These studics concentrate on more cfficient solution of lincar and
weakly nonlinear algebraic systems with iterative methods.

With the work under this contract, we have deepencd the understanding of the fluid motion
in liguid-filled cylinders. The analytical work provides cstimates for the moments in various
cylindrical configurations, guidance for the design of numerical methods, and an improved basis

lor caleulation of the moments.  Spectral codes for solving the lincar and nonlinear problem have

heen developed and verified to efficiently caleulate the liquid moments up o Reynolds numbers of
the order of 2-10%. The spectral code for the lincar problem will be further developed 1o overlap
with the boundary-layer methods in the range of high Reynolds numbers.
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3. Personnel

During the working pecriod, the following personnel were partly supported under Contract
DAAALS-85-K-0012:

Thorwald Herbent, Professor, Principal Investigaior
Rihua Li, Postdoctoral Associate

Rclja Zivojnovic, Graduate Student (M.S. level)
Stephen D. Greeo. Graduate Student (Ph.D. level)
Mohamed Selmi, Graduate Student (Ph.D. lcvel}
Charlottc R. Hawley, Rescarch Specialist

Vincet Mcnta, Undergraduate Student

David Picrpont, Undergraduate Student

Rihua Li developed the volume approach for the calculaien of the liquid moments and
implementcd this mcthod into the numerical work. Li analyzed the problems associated with
comcrs of the computational domain for spectral codes and contributed both to the analytical and
numcrical aspects of the rescarch program. In 1987, Li developed the simplificd formulation of
the tinear problem and the closed-form solution for the cigenfunctions. Dr. Li is presently Post-
doctoral Associate in the Department »f Acmospace and Mechanical Engineering at the University
of Anizona.

R. Zivojnovic and S. Greco were involved in developing the perturbation approach and solv-
ing the perurbation cquations numerically. Owing o the complexity ol the problem, they
cooperated only for & short time in the program.

Mohamed Sclmi has continucd the work of Dr. Li at OSU. Hc developed codes for deter-
mining the cxpansion cocfficicnts of the lincar solution in temms of cigenfunclions and for direct
solution of the lincar system by spcctral methods.

Charloitc Hawlcy was responsible for computer operations and software, project administra-
tion, and technical manuscripts,  Since December 1987, she 1s Rescarch Assistant at OSU and
continucs her cooperation in the rescarch program.

4. Publications (Mote: See Appendices A-H)

The fellowing publications, repors, and communicalicns were prepared with support by con-
tract DAAA1S-85-K-0012:

(1) **Visualization of the Flow in a Spinning and Nutating Cylinder,”’ by Th. Herbert and D.
Picrpont, in: Proc. 1985 Scientific Conf. on Chemical Defense Research, Aberdeen Proving
Ground, Maryland, 1985. (Ed.) M. Rausa, Report CRDC-SP-86007, pp. 989-994 (19386).

(2) ‘*Analytical and Computational Studics of the Fluid Motion in Liquid-Filled Shells,”” by Th.
Herben, in: Trans. Fourth Army Conf. on Applied Mathematics und Computing, Ithaca, New
York, 1986. ARQO Report 87-1, pp. 627-636 (1987).

(3) ‘'Numecncal Study of the Flow in a Spinning and Nutating Cylinder,”” by Th. Herbernt and R.
Li, AIAA Paper No. #7-1445 (1987).

(4) ‘A Spectral Navier-Stokes Solver for the Flow in a Spinning and Nutating Cylinder,"" by
‘Th. Herben, in. Proc. 1986 Scientific Conf. on Chemical Defense Kescarch, Aberdeen Proy-
ing Ground, Maryland. 1986 (Ed.)) M. Rausa, Report CRDC-SP-¥7005, pp. 455-460)




(1987).

(5) “'Flight Simulation for Liquid-Filled Projectiles,”” by Th, Herben, Proc. 1987 US. Army
CRDEC Scientific Confercnce on Chemical Defense Research, Aberdeen Proving Ground,
Maryland (1987). Report CRDC-SP-88013, pp. 377-385 (1988).

(6) “'Computational Study of the Flow in a Spinning and Nutating Cylinder,”” by Th. Herbent
and R. L1, AJAA J. (1988), under revicw,

(7)  *'Symbolic Computations with Spectral Mcthods,”' by Th. Herbert, ASME, AMD-Vol. 97,
in Symbolic Computation in Fluid Mechanics and Heat Transfer, pp. 25-32 (1988).

(8) **High-Reynolds-Number Flows in a Spinning and Nutating Cylinder,’” by Rihua Li and Th.
Herbert, in: Proc. 1988 Scientific Conf. on Chemical Defense Research, Aberdeen Praving
Ground. Marvland, 1988. To appear.

The following papers reporting results obtained under the support by this contract arc in
preparation:

(9)  **Perarbation Analysis of the Flow in a Spianing and Nutating Cylinder of Large Aspect

Ratio,"”” by Th. Herben and R. 1., Physics of Fluids.

(103 “*Calculation of the Liquid Moments in a Spinning and Nutating Cylinder,”" by R. Li and

Th. Herbent, J. Guidance, Control, and Dynamics

(11) “*Spatial Eigenfunction Expansion for the Flow in a Spinning and Nutating Cylinder,”” by R.

Li and Th. Herbert, J. Tuid Mech.

S. Technical Presentations

(1)

)

(3)

4)

(5)

(6)

(7

(%)

The following papers were presented at meetings, conferenzes and scminars:

“*On the Domain of Stable Taylor-Vortex Flow,"" by Th. Herbert and R. Li, Proc. Confer-
cnce on Mathematics Applied to Fluid Mecchanics and Stability - Dedicated in Memory of
Richard C. DiPrima, Troy, Ncw York (Scpt. 1983).

““‘Zur Stabilitat axialsymmetrischer Taylor Wirbcl,"" Institut fur Acrodynamik und Gas-
dynamik, Universitat Stuttgart (Oct. 1935).

“*State Sclection for Taylor-Vortex Flow,’” by R. Li and Th. Herbert, 22nd Annual Mecting
of the Socicty of Engincering Science, University Park, Pennsyivania (Oct. 1985).

“*On the Fluid Motion in Liquid-Filled Shells,”” Scientific Conference on Chemical Defense
Rescarch, Aberdeen Proving Ground, Maryland (Nov. 1985).

“*State Sclection in Taylor-Vortex Flow,”' Th. Herbert and R. H. Li, Mccting of the Division
of Fluid Mechanics of the Amcerican Physical Socicty, Tucson, Arizona (Nov. 1985).

“Fluid Motion in Liquid-Filled Shells,” Fourth A-rny Conference on Applicd Matheinatics
and Computing, Ithaca, New York (May 19806).

“Analomy of the Viscous Flow in a Spinning and Nutating Cylinder,”" Lockheed-Georgia,
Marictta, Georgia (Aug. 1980).

“*A Spectral Navier-Stokes Solver for the Flow in a Spinning and Nutating Cylinder,”" 19806
U.S. Ammy CRDEC Scientific Conlerene. yn Chemical Defense Rescarch, Aberdeen Proving
Ground, Maryland (Nov, 19860),




(9

(10)

(1

(12)

{13)

il

{19)

t16)

“‘Spectral Co*  .ation of the viscous Flow in a Rotating and Nutating Cylinder,”” by R. Li
and Th. He:.. <, 39th Annual Meeting of the Division of Fluid Dynamics, American Physi-
cal Socicty, Columbus, Ohio (Nov. 1986).

“*“Wavenumber Sclection in Taylor-Vortex Flow,”' by Th. Herbert and R. Li, Fifth Taylor-
Vorex Flow Worcing Party, Tempe, Arizona (March 1987).

““Viscous Fluid Motion in a Spinning and Nutating Cylinder,”” by Th. Herben, Department
of Mecchanical Enginecring, Massachuscits Institute of Technology, Cambridge, Mas-
sachusetts (April 1987).

“*Numcrical Study of the Flow in a Spirning and Nutating Cylinder,”” by Th. Herbert and R.
Li, AIAA 19th Fluid Dynamics, Plasma Dynamics and Lascr Confercnee, Honolulu, Hawaii
Junc 1987).

“*Computation of the Flow in a Spinning and Nutating Cylinder,”” by Th. Herber, Depan-
ment of Acronautical and Astronautical Engincering, The Ohio State University, Columbus,
Ohio (Oct. 1987).

““Flight Simulation for Liquid-Filled Projectiles,”” by Th. Herben, 1987 U.S. Army CRDEC
Scientific Conference on Chemical Defense Rescarch, Aberdeen Proving Ground, Maryland
(Nov. 1987).

*Analysis of Viscous Flows by Spectral Methods,” by Th. Herbent, Seminars on Algorithms
tor Supercomputing, Ohio Supercomputer Center, Columbus, Ohio (Scptembcer 1988).
**High-Rcynolds Number Flows in a Spinning and Nutating Cylinder,”” by Th. Herben,
Chemical Research Development Fngineering Center, Aberdeen Proving Ground, Maryland
(November 1988).
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Visualization of the Flow
in a Spinning and Nutating Cylinder

Thorwald Herbert
David Pierpont

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Abstract

In the framework of a feasibility study, we have designed a small model test fixture for visualization
of the flow in a spinning and nutating cylinder. We describe the apparatus and the visualization tech-
nique, and report sore results. As the Reynolds number increases, we observe an axiaily almost uniform
flow that turns at the ends, the development of two elongated cells in the plane of the spin and nutation
axis, the formation of additional laminar cells, and ultimately unsteady and turbulent flow with a super-
posed large-scale cellular motion.,

1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer dynamical instabiiity.
For cylindrical cavities and low viscosity of the liquid, the instability due to basically inviscid inertial
waves is rather well understood!. The instzbility of certain shells like the XM761, however, is dis-
tinguished in character by the rapid loss in spin rate. Experiments® and subsequent field tests® establish
that this flight instability is most pronounced for liquid fills of very high viscosity.

Theoretical analysis of a simple model of the internal flow! has provided some insight into the physi-
cal mechanisms of this instability, and rough information on flow velocity and despin moinent. For
sufficiently low Reynolds numbers, more detailed results for the velocity ficld have been obtained using
computational methods for steady flows®®. The flow phenomena at higher Reynolds numbers, however, are
outside the scope of these methods, and it is nat even clear whether the steady approach is justified.

™

Urevious experiments at CRDC and BRL were carried out under full-scale conditions. These studies
concentrated largely on global properties such as the moments exerted by the internal fluid motion. The
vet most successful study of the field properties is Miller’s observation of the void in a partiaily filled
cylinder’. This study shows ar. axisymmetric void at low Reynolds numbers, a characteristic wavy distor-
tion of the void at medium Reynolds numbers and an irregular (probably unsteady) liquid-air interface at
high Reynolds number. Computational studies® indicate a cellular structure of the flow at = Reynolds
number Re == 45, where Re = wa?/v is formed with the spin rate w, the cylinder radius a and the
kinematiz viscosity v. However, there is vet no link between numerical results and void observations. An
attempt to trace buoyant beads with a movie camera® was very limited in revealing details of the velo-
city fleld. The limitations are due to distortion of the tracer path in the multi-media optical path involv-
ing curved surfaces, and to inevitable minute density differences in combination with high accelerations.
Mitler® used photochromic dye excited Ly a high-power pulsed laser in order to generate _. ! .ccoid vl
city profiles. Lighting problems in recording the pictures by a high-speed movie camera forced 4 reduc-
tion of the time scale, i.c. operation of the test fixture at lower spin rate, nutation rate, and kincmatic
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viscosity. Qualitative pictures of the small azimuthal velocity have been obtained. The efforts to provide
more detailed daca have been discontinued, however, due to continuing lighting problems, and vhe adverse
off-design couditions at further reduced time scales.

I earlier work®, we have proposed a drastic reduction of length and time scales for experimental
studies, exploiting the principles of dynamical similarity. Following these considerations, we have designed
and built a low-cost test fixture for flow visualiza*ion. In our qualitative approach, the length scale is
reduced to 1,5, the time scale to 1/10, thus reducing moments by more than five orders of magnitude and
velocities to 1/50. In spite of improvising and compromising in the interest of saving time and money, we
have observed a wealth of phenomena from laminar, dominantly unidirectional flow through various
stages of cellular motions to turbulent motions with a superposed cellular structure.

In the following we describe the principles underlying the design, the test fixture, the visualization
techpique and some of our observations.

2. Dimensional Analysis

Evaluation of the experimentai atiempts to visualize the fluid flow clearly reveals the extreme full-
scale conditions as evil. However, conclusive experiments can be conducted by exploiting the principles of
dynamical similarity and appropriate scaling laws®*. Between the three reference quantities, radius a,
spin rate «;, and density p for length, time, and mass, respectively, the density of different fluids offers lit~
tie variability. However, length scale and time scale can be easily changed. For dynamical similarity, the
1ollowing dimensionless quantities must be kept fixed:

~=c/a aspect ratio

6 nutation angle
=0 /w frequency

Re = pwa?lu Reynolds number

The nutation angle must remain the same in a scaled setup. Radius a and half-length ¢ of thec cylinder
must be scaled by the same factor in order to keep the aspect ratio fixed. A sccond facter can be appliced
to both spin rate w and nutation rate {1, in order to preserve the frequency. I(eeping Re fixed requires
changing the kinematic viscosity v == u,p by the same factor as wa? Since the desired vendency is

toward smaller radii and spin rates, we require less viscous luids than those used in the full-scale experi-
ments. Such fluids are easy to find.

It is obvious that the main thrust of an experiment may require specific optimum conditions. Flow
visualizaticn requires low veiocities, i.c. low values of wa. Measurements of moments require optimum
values of w?a® Minimizing the rate of change of temperature requires a minimum of w3a 2. A good sctup
for flow visualization, therefore, may produce moments in a hardly measurable range.

3. The Test Fixture

The goal of our efforts was to show that a low-zost device (== $500) can be designed for flow visuali-
zation. Details had to be kept simple. Accuracy and convenience had to compromise. Various prelin-
inary concepts have been condensed into the design of a small apparatus that was built and explored as a
senjor student project!®. The result of these efforts is shor n in figure 1. A one-inch inner diameter
cylinder of aspect ratio A = 4.3 is used. The cylinder is cut from a pyrex glass tube with the inner diam-
cter accurate within 1/5000 inch, but with varying wall thickness that affects the optical quality. The
cylinder is filled with mixtures of water and glycerin. ‘I'he mixing ratio is used to vary viscosity. On top,
the cylinder is closed with a screwed-in plastic plug. A center hole allows access to the interior, especially
for removing air bubbles. The hole can be closed using a toothpick.

‘Ihe cylinder is glued to a drive plug and axis machined from a single piece of aluminum. The one-
sided support aliows easy (optical) access to the cylinder and permits using cylinders of different length.
One-sided suppert is affordable due to the moments being approximately five orders of magnitude smaller
than in the full-scale experiments. The axis is twice supported by ball bearings. The cylinder and shaft
are driven via timing belts over exchangeable scts of pulleys by a €24V d.c. motor with suflicient torqgoe
12 the range of 500 - 5000 rpm. Motor and cylinder support are mounted to an aluminum frame that can
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Le inclined to the vertical axis by approximately 5, 10, 15 and 20 using different support holes and
siruts,

The horizontal support plate is machined to lecave the center position free for access and is screwed
to a commercial record player (Garrard model 775). The plate can be offset in order to align the liquid’s
center of mass with the nutation axis. The rccord player provides nutation rates of 33, 45, and 78 rpm.
The hollow axis is utilized to provide power to the spin motor. A nail with a smooth top and a brush fixed
to the turntable proved sufficient for transmitting a single voltage to the motor. The remaining com-
ponents of the experiment are: a Heathkit regulated power supply for the spin motor, a strobelight for
controlled pulsed lighting, and suitable flow tracers. The strobelight {General Radio Strobotac) with adju-
stable frequency is used for lighting as well as for measuring the spin rate of the cylinder.

4. Visualization

As flow tracers we use Afllair 100 Silver Pearl, kindly donated by EM Chemicals, Hawthorne, NY.
The material consists of very fine and shiny plastic platelets commercially used for cosmetic purposes.
Although tieir specific weight is diflerent from that of the fluid, the low accelerations in the scale model
permit. practiczlly buoyant behavior of the platelets over considerable time.

At the slow time scale of the experiment, the fluid motion can be visually inspected while running
the apparatus. At high viscosities, the apparatus can also be suddenly stopped, with the flow tracers
“{rozen" in the resting fluid. The platelets align with surfaces of constant shear. Therefore, by manually
rotating the cylinder forth and back, the three-dimensional structure of the field can be inspected. This
crude observation is very helpful in developing the visualization technique. A detailed account of the
technique {appropriate particle density, pitfalls such as the history of particlc distribution and alignment)
has been given elsewhere!'®.

Visualization of the frozen pattern can be essentially improved by using a light sheet passing
through the spin axis. Sheet lighting enhances the clarity of the flow pattern by showing only the
reflecting particles in a cut through the fluid. It reduces the undesirable reflections from the cylindrical
surfaces and also enables photographic recording of the flow structure while the apparatus is in operation.
A continuous light sheet is produced by a Spectra Physics model 120 (15 mW" helium-neon laser and a
cylinder lens. In order to avoid the need for accurately firing the camera (3> mm Pentax with 50 mm
lens) at a certain time, a cylindrical card board screen with a vertical slot and a 90° offset opening is fixed
to the circumference of the turntable. The shutter is manually opened and closed after the laser sheet of
light flashed 3 to 5 times turough the slot.

5. Results

Some photographs taken with the apparatus in motion are shown in Figures 2-7. The figures show
the flow pattern in the plane spanned by spin axis and nutation axis for § = 213", Q == 78 rpm and
different Reynolds numbers. Figure 2 shows that at Reynolds numbers as low as Re = 20 a cellular pat-

tern develops with a pronounced symmetry about the a2xis as well as the midplane of the cylinder. At the

present time it is unclear whether this patt:rn reflzcts the instantaneous velocity field. Symmetry argu-

ments support viewing this pattern as origin.*ing [rom a nonlinear streaming term. As Re 1ncreises to

Re = 40 (Figure 3), the pattern and its symmet;v become more pronounced. At Re = 50 (Figure 4},

additional cells develop near the cylinder’s midplane. Simultaneously, the symmetry with respect to the

cylinder axis is broken. A characteristic wavy distortion of the pattern near the axis develops that is .
more clearly shown in Figure 5 at Re = 105. While the cells disappeared, virtually axisymmetric bub-
bies occur at the end plates. At Re = 140 (Figure 6) these bubbles still persist. The bright, wavy line
near the axis has broken into segments that are very much aligned like the void in Miller’s observations.
This pattern occurs only in the plane of spin axis and nutation axis and is therefore considered to
represent the instantaneous velocity field. From the wealth of increasingly complex phenomena, Figure 7
finally shows a visualization at high Re = 8000. The random distribution of the particles in the interior
most likely indicates turbulent flow. Nevertheless, the faint line near the axis resembles the characteristic
centerline distortion of Figure 6, indicating a superposed large scale structure. The presence of such a
large scale motion is also supported by the regular bands of particles deposited ai the cylinder wall.
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Specification of accurate Reynolds numbers suffers from some uncertainty in monitoring and measur-
ing the wide range of viscosities for the hygroscopic water-glycerin mixtures exposed to uncontrolled ther-
mal conditions. To within this uncertainty, however, the figures clearly reveal the cellular structure of the
fow and the changes of the structure as the Revnolds number increases. Perhaps the most striking result
c¢f this visual otudy of the flow stiucture is the manifold of pattern at higher Reynolds numbers. A sys-
tematic analysis of these patterns has not been conducted. Although we found numerous opportunities for
improvements, the feasibility of flow visualization with relatively simple means by proper scaling has been
clearly demonstrated.
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Figure 1

The miniature test fixture. The
inner radius of the cylinder is
a = 1.27 cm, the aspect ratio 4.3.

Figure 2 Figure 3
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Figure 6

0 =21.3"°
1 = 78rpm
v =70 ¢St
w = 600 rpm
Re = 140

Figure 5

§ =213

{1 =178 rpm
v =70 ¢St

w == 430 rpm
Re == 105

Figure 7

0 =21.3°

1 =78 rpm
v =095 ¢St
w == 450 rpm
Re = 8000
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ABSTRACT

Spin-stabilized projectiles with liquid payloads can experience a severe flight instability
characterized by a rapid yaw-angle growth and a simultaneous loss in spin rate. Labora-
tory experiments and field tests have shown that this instability originates from the
internal fluid motion in the range of small Reynolds numbers. In earlier work, we
developed a simple model of this flow based on linearized equations for the deviation
from solid-body rotation in an infinite cylinder. Here, we perform a perturbation
analysis in order to estimate the effect of ronlinear terms. Beyond a small correction of
the axial velocity component, we obtain radial and azimuthal components of the velocity
field in agreement with computational results for the core region of a finite-length
cylinder. The anaiytical results are exploited in the design of a spectral Navier-Stokes
solver for the steady motion in a finite cylinder. A first raw version of this spectral code
provides flow field and pressure distribution in a small fraction of the computer time

required by existing codes. We report some results and discuss possible refinements of
this code.

1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer a
dynamical instability which results in an increased coning (or yaw) angle and a simul-
taneous loss in spin rate. Laboratory experiments, computational results, and field tests
indicate that these phenomena arise from the coning-induced fluid motion in a limited
range of small Reynolds numbers. Although in special cases this instability has been
removed by trial and error, future design of reliable projectiles would profit from the
opportunity to estimate the liquid moments, and to include these moments in flight
simulators. The empirical data base [1,2] is sparse, however, and computational
methods in use (3,4, 5] are ra . :r demanding.

Our theoretical analysis of this problem serves on one hand to gain insight into the
anatomy of the flow phenomena and to support the ongoing experiments. On the other
hand, it promotes our efforts to develop a more efficient code for the numerical simula-
tion of the flow in a fini’ container. While the analytical work aims at the velocity field
in the core region of a sufficiently long cylinder and on the viscous components of the
moments, in particular the viscous despin (negative roll) moment, the computational
work also captures the flow near the end walls and the pressure contributions to yaw
and pitch moments.

Our previous work [6] shows that the deviation from solid body rotation is
governed by a small parameter € == {1 sinf /w involving the nutation rate 2, the nuta-
tion angle 8, and the spin ratc w. The solution of the linearized equations consists of
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only an axial component of order O{e). This axial flow is the dominating feature of the
fluid motion and produces a negative roll moment of order O (e?) owing to Coriolis
forces. Although these results are in reasonable agreement with experimental and com-
putational data, one may anticipate modifications of velocity field and roll moment if
nonlinear terms are taken into account. Estimates of these nonlinear effects are desired
in order to support previous results and to verify our conclusion that the three-
dimensional flow field in a finite-length cylinder is essentially given by the solution of
linearized momentum equations. In the following, we perform a straightforward pertur-
bation expansion for the nonlinear problem. We develop and solve the equations for the
flow in an infinitely long cylinder up to order O(e3). A closed-form solution is given for
the radial and azimuthal velocity components at second order. The third-order equa-
tions are solved numerically.

The perturbation solution also provides estimates for the number of expansion
functions required for accurate spectral representation of the radial (r) and azimuthal
(¢) structure of the solution. A spectral code appears as an attractive alternative to the
existing Navier-Stokes solvers. The finite-difference code developed at Sandia Labora-
tories |3, 4] exploits Chorin’s method of artificial compressibility. The steady solution at
11 X 24 X 21 grid points in r, ¢, z-direction is obtained by integrating over typically
10* time steps, a task that requires 68 minutes of CPU time on an IBM 3090. The result
consists of 22,000 plus values for the velocity components v,, v,, v, and the pressure p
that can be utilized for a calculation of the moments. Strikwerda & Nagel [5] describe a
code using finite differences in radial and axial direction and pseudospectral differencing
in the azimuthal direction. Nonuniform grids are introduced for increased resolution
near the walls. The difference equations are solved by an iterative method based on suc-
cessive over-relaxation. The computer time required is comparable to that of the Sandia
code (Nusca, BRL, personal communication). Although the rolative merits of the two
codes, especially with respect to the captured range of Reynolds numbers are yet in the
dark, it scems well possible to beat both of these codes in two respects: computer time
and adaptability to the unsteady problem.

For a feasibility study, we have pursued a simple concept that is open to numerous
refinements. We use Chebyshev-Fourier-Chebyshev expansions in r, é, z, respectively,
and convert the linearized equations into a linear algebraic system for the expansion
corflicients. The solution of this system (or any other solution at neighboring parame-
ters) 1s used as initial approximation for iterative improvement by the modified Newton
method. The experience with this coe 15 encouraging with respect to accuracy,

efficiency. and robustness.

2. Governing Equations

We consider the motion of a fluid of density p and viscosity u in a cylinder of
radius ¢ and length 2¢ that rotates with the spin rate w about its axis of symmetry, the
z-axis. We consider the motion with respect to the nutating coordinate system z,y, z.
This system 1s obtained from the inertial system X . Y, Z by a rotation with the nuta-
tion angle # about the axis ¥ = y  Therefore, z is in the Z, z-plane, and this plane
rotates about the Z-axis with the nutation rate {I . The two axes of rotation intersect
in the center of mass of the cylinder. We consider w > 0, 2, and 0 < 0 < 7 /2 as con-

~tant
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The fluid motion 1s governed by the Navier-Stokes equations written in the nutat-
ing coordinate system:

DV
P Dt" +20 XV, + @ X (AXr) = -9, ruviV, (1a)
V.vn - O (lb)

V, is the velocity measured in the nutating frame, /’, the pressure, and r the position

vector. Equations (1) are subject to the no-slip and no-penetration conditions at the
cylinder walls.

It is convenient |6] to split the velocity and pressure fields according to

Vn:v:+vdvl,n 'Ps'{Pd' (0)

where V,, P, describe the state of pure solid-body rotation, whereas Vi, Py represent
the deviation from solid-body rotation. The deviation V; and the reduced pressure Py
are ultimately responsible for the observed flight instability.

The equations for V4, £7; are written in terins of nondimensional quantities v, py
using a,w, and p for scaling length, time, and mass, respectively. The solution then
depends on four nondimensional parameters: aspect ratio A — ¢ /a . nutation angle 6,
frequency 7 = Q /w, and Reynolds number R = pwa®/u. The aspect ratio enters the
solution only through the boundary conditions at the end walls of the cylinder. The
boundary conditions on v, are homogeneous.

In cylindrical coordinates r, ¢, z, the equations for the nondimensional deviation
velocity vy = (v,, vy, v, ) and pressure p; take the form
' Av dv
rv L ~ ¢ + ,‘
r dr r 9¢ dz

=0, (3a)

D'v, - — 21 + 7,)ry + 2r4v, = (3b)

) v 0 duv, .
P Lipmy, o 20
ar R 7'2 r2 (Jd)

v, v
D'vy + r° 4214 7,)v, - 27,0, = (3¢)

v o dr
A e

r dé I r r? d¢

dp
d 2rr, + L

Dz R

D"v, | (3d)
wherc

. . . v . Y
) - i 4 —(i— 1 v, Q_ 2 ,(), T
Ji ¢ dr r J¢ T d:

and
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T, = -€cosp , Ty = €sing , 7, = rcosf , ¢ = rsinf . (4)

The primary effect of nutation is contained in the ¢@-periodic force term -2rr, =
2¢rcos¢ in the z-momentum equation (3d). For ¢ = 0, equations (3) support the

trivial solution vy = 0, py = 0. The system also supports the following symmetries:
v (r.¢+m,-2)=v,(r,¢,2) (5a)
volr, é+m, - 2) = vy(r. ¢, z) (5b)
v (r,é+m,-2)= -y, (r, ¢,2) (5¢)
pi(r,é+m,-2) = py(r,¢,2) (5d)

3. Perturbation analysis for an infinite cylinder

The steady flow in a relatively long cylinder (aspect ratio A\ > 4) at low Reynolds
number is expected to have a rather simple structure and to provide a roll moment pro-
portional to Re. In fact, the flow is expected to exhibit little axial variation over much
of the cylinder length. Previous work (6] has therefore relaxed the boundary conditions

at the end walls. In this way, one seeks the steady flow in a finite segment of an
infinitely long cylinder.

In the physical situations of interest, ¢ = ({ /w)sinf is a small parameter,
¢ < 006. Consequently, it seems reasonable to pursue a straightforward perturbation
expansion 1p ¢. This provides vy in the form

m ’
vg = 3 e"viM(r 9) (6)
n=1
and similar expressions for py .

The development of general expressions for the expansion coefficients vi") from
equations (3) indicates an alternating pattern: Odd-order terms contain odd multiples of
¢ and contribute only to the axial velocity v, , while even-order terms contain even mul-
tiples of the azimuthal coordinate ¢ and contribute only to the radial velocity v, and
azimuthal velocity v,. Therefore,

(0,0, v,(")), n odd,

(v,("), vy (n) 0), n even,

and the components of vi"! take the form

n/2 . ;
v,(")== E(unm(r)edm’ -+ ﬁm,,(r)e_wm‘), (8a)
m:-1
n/2 2 - -i2m¢
ve ") = vy, (r) + 2 (vam (1) "8 4 Uy (r) e PO, (8b)
m =
(n) (n +]‘)/"2 §(2m- 1)é . S tm-1)¢
Uzn = Z (wnm(r)e + wnm(r)L Y )’ (SC)

e ]

where the tilde denotes the complex conjugate. The aperiodic term in v,(") is suppressed
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by the continuity equation. The r-dependent coefficient functions in eqs. (8) are
required to satisfly homogeneous boundary conditions at r = 1 and to be finite at the
axis r = O for a physically meaningful solution.

At the lowest order O (¢), the z-independent force term in eq. (3d) can be balanced
only by an axial component of the deviation velocity. This component i3 the dominating
feature of the flow in a long cylinder. The axial velocity at order O(¢) can be found in
analytical form,

wulr) = itk ), (10

where [, is the modified Bessel function, and a = (1 + i)(R/2)"/2 This solution is
valid for arbitrary Reynolds number but may be unstable as R exceeds some critical
value. The properties of 'he resulting flow field are discussed by Herbert [6].

At higher order, it is convenient to eliminate the pressure for the periodic com-
ponents by using the vorticity form of egs. (3). At order O (e?), compariscn of the equa-
tion for vy with the imaginary part of the equation for w,, immediately shows that the
aperiodic component of the azimuthal velocity is

vaolr) = -2 Im({wy,(r)). (11)

This relation can be exploited to show that the despin moment of order O (¢>) due to
shear forces on the cyiinder wall is identical with our former resuit.

The ¢-periodic componenis are governed by s coupled set of inhomogenecus
differential equations with variable coefficients. Essential simplification at the expense of
increasing the order of differentiation results from eliminating v,y by use of the con-

tinuity equation. With some effort, the radial velocity component of O (e*) can be found
in closed form,

Cq 21 V3 Jofs /V2)
ey Jo{8) +¢,Yo(8)] + €38 + — + 12
o1 o) + ex¥oo)l + eqo + 4+ BETETL ()
where o = fAr, B = (i - 1)R'? and J,, J;, andY, are Becssel functions. The
coeflicients ¢y, cq, c3, and ¢4 can be determined numerically.

ug(s) =

@ f=

The velocity components at order O (¢?) are of interest primarily since w3, provides
the first nonlinear correction to the despin moment. In view of the effort involved in
deriving the closed form solution for ugy and the ultimate need to determine the
coefficients in en. (12) numerically, we decided to solve the differential equations for the
third-ordcr components by means of a spectral collocation method.

4. Resalts of the Parturbation Analysis

Detalled equitions, results, and graphs of the various functions at relevant Rey-
nolds aurubera will be published elsewhere [7]. Here we give only a summary of the main
results. The mwotion is governed by the axial component w,, at order O(e). Of the
higher order terms, only the aperiodic term v, is substantial. In the cylinders center
section, these terms are in good agreemeut with results obtained from the Sandia code,
and in excellent agreement with our own compoutations. All the other terms are not only
of order O (1) but in fact less than unity, assuring rapid convergence of the perturbation
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series. The contribution of wj, to the despin moment is negligible. The ¢-periodic
terms oscillate about zero as r varies between 0 < r < 1. Accurate representation of
single high-order terms by radial Chebyshev series may require numerous expansion
functions For the total velocity field, however, the error in representing these terms is
of little importance. At Reynolds numbers in the range of maximum despin moment,
reasonably accurate approximations can be obtained with as few as five polynomials in
radial direction. In the azimuthal direction, the solution is governed by terms periodic¢ in
¢, and by the aperiodic term voy. Fourier series with three or five modes, therefore, pro-
vide approximations of sufficient accuracy for practical purpose.

5. Spectral Approximations for a Finite-Length Cylinder

The results of the perturbation analysis suggest that a good approximation to the
flow in a finite cylinder can be obtained by solving the linearized version of equations (3).
Linearization can be performed in different ways. The first is a linearization in ¢, as in
the perturbation analysis. The resulting equations support strong symmetries. Beyond
equations (5), the solution satisfies

vd(r,¢+1r,z)=—vd(r,¢,z), (133,)
pilr d+m,z) = —py(r,¢.2). (13b)

These relations provide a useful check on the results of the spectral code. A second
linear system can be obtained by linearization in the components of v,. This lineariza-
tion retains coupling terms such as 27,4v, in eq. (3b) which destroy the symmetries (13).
The second system can be considered a special case of a third linearization about some
known solution v{%, p/ . The third procedure is very efficient if the solution is sought

for a densely spaced sequence of parameter combinations as in flight simulations. The
second system is equivalent with the third one for v}o) = pd(o) = 0.

The algebraic form of the equations is obtained by use of spectral collocation. The
velocity components are cxpressed in the form

K L M
U= ) Y X uum Re(r) Fi(é) Zm (2 /3) (14)
k=1l=1m=1

with similar expressions for wv,, v,, and py. The azimuthal functions are
Iy == cos (I -~ 1)¢ /2! for odd I, F; = sin [l /2| for even I, where | = 1,2, --- L,
and L 18 odd. The azimuthal collocation points are equidistant, ¢, = 2n (I - 1)/L . If
no use of the symmetries (5) is made, the axial expansion functions are the Chebyshev
polynomials Z,, = T, _4(z/\), m = 1,2, --- M. The collocation points are
2 N = cosi(m - x /M - 1)]. In radial direction, even or odd Chebyshev polynomi-
als are used, depending on the quantity under consideration and the periodicity in ¢.
The proper choice is dictated by the requiremnent of a unique value of all quantities on
the axis 1 = 0. For example, the axial velocity component must assume a unique value
independent of ¢ as r — 0. Therefore, even polynomials are to be used if { = 1 while
odd polynomials are to be used f { > 1. The radial collocation points are r, =
cos i(k - Dm 2K - 1), k = 1,2, - - K. Consequently, 0<r, <1, and no
difficulty can arise from points on the axis. The collocation points in radial and axial
direction are concentrated near the boundary such that high resolution in this region is
obtained without additional coordinate tiansformations.
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Our implementation of the spectral method uses precalculated and stored matrices
cortaining the values of the expansion functions and their derivatives at the collocation
points. It is a straightforward matter to convert the linear system of partinl differential
equations derived from eqs. (3) into an algebraic system of dimension N = 4K L M
for the coefficients wy,, . vgym , Vkm , and py,, for v, vy, v,, and p,;, respectively. It is
not straightforward, however, to implement the homogeneous boundary conditions for
the velocities at the cylinder wall and the condition on the pressure that is only deter-
mined tc within an additive constant. In principle, the boundary conditions are imple-
mented by replacing three of the four differential equations in the boundary points. The
question then is which equation should be retained and where the condition on the pres-
sure, ¢.g. py = 0, should be applied. Trial-and-error leads to numerous cases with ill-
determined matrices or zero determinant. In other cases, a correct solution for the velo-
city field 1s obtained, but the pressure contains a non-physical spurious term. With the
velccity field given, we attempted to calculate the pressure by solving a Poisson equation
with von [Neumann boundary conditions, but we encountered the same difficulties.
Problems with calculating the pressure in closed domains with spectral methods are
well-known, e.g. [8]. However, tie reports of negative results are rather unspecific, and
neither the origin nor methods for removal of this spurious term seem to be known.

We have therefore performed a detailed analysis of the flow in a square driven by
an internal force field. This simpler two-dimensional problem exhibits all characteristics
- including the spurious pressure term - of the original problem. Detailed results of this
study will be reported elsewhere |9j. The study reveals that the spurious term is associ-
ated with the corners of the domain. The term vanishes in all collocation points except
the corners, where it may assume uarbitrary values The term can be suppressed by
retaining in the corners one of the momentum equations that contain the derivative of
the pressure in the direction of the boundary. In the cylinder problem, the =z-
momentumn must be retained in order to suppress even as well as odd spurious terms.
The condition on the pressure can be applied anywhere except in the corner points.

We solve the linear algebraic system for the expansion coefficients with a special
subroutine based on Gauss elimination with partial pivoting. The <nbroutine stores all
data required to solve the same system with a new right-hand side without repeating the
costly (O(N3) operations) reduction of the matrix to upper triangular form. Once the
solution is obtained, a new right-hand side is formed taking the nonlinear terms into
account and the system is solved again. This procedure is iteratively repeated until
sufficient accuracy is obtained. The procedure is equivalent to the modified Newton
iteration (without updating the Jacobian in every step) and converges rapidly since the
nonlinear corrections to the velocity are small while the pressure appears hnear in equa-
tions (3).

6. Results o1 the Spectral Code

In the following, we present soine preliminary results of a test run for £ = 14.95,
0 = 20°, 7 == 0.1667. and X == 4.368 which results in ¢ = 0.057. The results are for
K =4 L —= M = 5 and conscquently N := 400 Dectailed convergence tests will be

performed with later versions of the spectral code. Figure 1 shows the axial and radial
velocity in the 7, z-plane. Only the upper half, z > 0, of the cylinder is shown; the
lower half is governed by the svinmetries (5). The veloaity distribution at ¢ = 0 agrees
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well with the results of the perturbation analysis and computations with the Sandia
code. Near the walls, the solution seems to bs more realistic and more accurate than the
Sandia results. The figure also verifies the existence of a predominantly axial flow over
most of the cylinder length, except within a region of the order of the radius near the
end wali. Linear and nonlinear velocity distributions are hardly distinguishable. Clearly
visible is the turning of the flow near the end wall. The radial and azimuthal velocities
at z = 09X are shown in figure 2. The right tick mark indicates the z-direction,
¢ = 0. At Re = 14.95, the maximum of the axial velocity occurs at ¢ = 45 °.

Pressure distributions in the z, z-plane are given in figures 3 and 4 with the heavy
lines indicating positive values. The pressurc in figure 3 is obtained simultaneously with
v, from equations linearized in ¢, and clearly shows the symmetry (13b). Figure 4 gives
the result {rom the nonlinear equations. It is interesting to note that a very similar pres-
sure field can be obtained by solving the Poisson equation for the pressure with the
linear velocity field. The inhomogenecus term in the Poisson equation is inherently non-
linear in the velocities. Figure 5 gives the pressure distribution across the cylinder near
the end wall at z == 09X\ Remarkable is the formation of a high-pressure region in the
corner near ¢ = 0, which produces a large moment about the y-axis. Looking at a series
of plots like figures 4 and 5, one may wonder whether the details of the pressure varia-
tion near the cylinder wall can be resolved with a finite difference approximation with a
step size of Ar == 0.1.

The azimuthal mean selocity at = == 0 is shown iu figurc 6. The shear exerted by
this component on the cylinder wall opposes the spinning motion and is the ultimate
cause of the despin moment. The axial and radial mean velocity field is given in figure
7. This streaming term exhibits a toroidal motion stretched over cach half of the
cylinder. It is this mean velocity that causes the symmetric pattern in flow visualiza-
tions [10!. Figure 8 shows the observed pattern of the flow 4t R =~ 30 which is typical
for the range of low Reynolds numbers.

7. Discuasion

The experience with the first version of the spectral code shows that high perfor-
mance can be achieved. The reported ren with N == 400 requires 1.3 minutes CPU
time on an IBM 3090, 48 minutes on an Apollo DN300 desktop computer. The solution
is obtained in semi-analvtical form with only N = 400 numerical coefficients. This low
data volume is especially attractive for communication with remote supercomputers.
The code is very well suited for vectorization, since practically all CPU time is spent on
constructing and solving an algebraic system. However, the code demands larger
memory than other codes {3, 5]. Since 64-bit arithmetic is highly recommended for spec-
tral methods in general, and the algebraic system requires N\ + 1) words of storage,
the above test requires 13 Mbyte of memory. Nowadays, the memory requirement
appears acceptable even if higher resolution is desired.

Finally, there are various ways to improve the performance and lessen the
demands. The first step 15 to exploit symmetry which reduces N by a factor of 1/2,
storage by 1.4, and tune by = 18 Second, the solution process can be split into two
|

levels, the firet of which caleulates only the velocity components while the pressure is

abtiined o posteriort by solving tie Poisson equation. After these changes, the above
test run wil vequiee fess Chan 1 onmute onoan MO68020 ‘68881 based desktop computer
25
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Alternatively, runs with higher resolution can be executed within a short time on super-
computers. One may also consider reducing the storage requirement by line iteration.
However, the ability to obtain a reasonably acurate solution by direct solution of the
(large) algebraic system bears valuable potential to answer the question whether the
steady solution is stable, and allows for analysis of unsteady motions. T*e design of a
reliable code for the unsteady problem can take profit from the kowledge of the eigen-
value spectrum for small unsteady disturbances of the steady flow.
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Figure 5. Contour plot of the pressure
field across the cylinder at 2 /A = 0.9.
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A SPECTRAL NAVIER-STOKES SOLVER
FOR THE FLOW IN A SPINNING AND NUTATING CYLINDER
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ABSTRACT

Artillery shells with liquid payloads may experience a severe flight instahility owing to the viscous fluid
motion in the cylindrical payload container. Analytical studies of this fluid motion suggest that the
velocity field in the aeroballistic coordinate system can be obtained from a linearized system of equa-
tions, with a small correction for nonlincar terms. Moreover, the smooth soluticn of the Navier-Stokes
equations at the relevant low Reynolds numbers can be accurately approximated by relatively few
terms of spectral expansions. We describe a spectral collocation method for calculating velocity and
pressure field and the associated moments for liquid-filled cylinders embedded in spinning and nutating
projectiles. The dezign goals are high efficiency, robustness, and the opportunity of extending the
method to unsteady problems. The method uses Chebyshev-Fourier-Chebyshev expansions in the
radial, azimuthal, and axial direction and exploits the symmetries of the problem. We present solutions
for the steady motion and compare with experimental data. We also evaluate the performance of our
code in comparison with other computer codes.

1. Introduction

[t is well known that spin-stabilized shells carrying liquid payloads can suffer a dynamical instabil-
ity which results in an increased nutation (or yaw) angle and a simultaneous loss in spin rate. Labora-
tory experiments, computational results, and field tests indicate that these phenomena arise from the
nutation-induced fluid motion in a certain range of small Reynolds numbers. Although in special cases
this instability has been overcome by trial and error, future design of reliable projectiles would profit
from the opportunity to calculate the liquid moments and to account for these moments in flight simu-
Iators. The empirical data base 12 is sparse, however, and computational methods in use 345 are

»

rather demanding.

In previous work,® we conducted a theoretical analysis which aimed at the origin of the viscous
despin (negative roll) moment. This analysis showed that the deviation from solid body rotation is
governed by a small parameter ¢ == Q sin@/w involving the nutation rate £, the nutation angle 0, and
the spin rate w. A solution of the linearized cquations was developed for a finite-length segment of an
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infinitely long cyhnder, 1. . disregarding the end walls of the cylinder. Velocity lield and the viscous
components of the moments were obtained in closed form. The velocity field consists only of an axial
component of order O (¢) which is the dominating feature of the fluid motion and nroduces a negative
roll moment of order O (¢?®) owing to Coriolis forces. Although these results are in reasonable agree-
ment with experimental and computational data, one may anticipate modifications ol velocity field and
roll moment if nonlincar terms are taken into account. Moreover, yaw aud pitch moments contain
essential contributions of the pressure * that originate from the turning of the flow near the end walls.
The effect of nonlinearity wus studied 7 by using perturbation expansions in ¢ and was found to be
small. The flow in a fimte-length cylinder, Liowever, can only be captured by a computational
approach.

The existing computer codes may scrve for establishing some basic results but are too inefficient
and insufficiently verified for routine applications. Our analytical work suggests the use of a code that
exploits (1) the near-hincarity of the governing equations and (1) the smoothness of the solution in the
relevant range of Reynolds numbers Therefore, we have pursued a simple concept that s open ‘o
numerous refinements. We use Chebyshev-Fourier-Chebyshev expansions in r, ¢, z, respectively, and
convert the linearized equations into a linear algebraic system for the expansion coefficients. The solu-
tion of this system (or any other solution at neighboring parameters) is used as initial approximation
fot 1terative improvement by the modified Newton method. The feasibility of this approach has been
demonstrated 8 with a crude spectral approximation to the solution. The version of the code reported
here exploits the diametral symmetry of the flow and allows for higher recolution at modest CPU times.
This version can also be adapted to a time-accurate analysis of the unsteady problem.

2. Governing Equations

We consider the deviation vy, pg [rom solhid-body rotation 1 a nutating coordinate system
7,y,2 where z s the eylinder axis and z is coplanar with the two axes of rotation. (I'or a detailed
discussion of the governing equations, sce the article by Herbert 6 ) All quantities are made nondimen-
stonal using a, w, and p for scaling length, time, and mass, respectively. The solution depends on four
nondimensional parameters: aspect ratio X == ¢ /a, nutation angle ¢, frequency 7 = {1 /w, and Rey-
nolds number B = pwa?/p, where 2¢ s the length of the cylinder, p is the density, and u the viscos.
ity of the flurd. The aspect ratio enters the solution only through the boundary conditions at the end
walls of the cylinder. The motion 1s subject to the no-slip and no-penetration conditions at the cylinder
walls. Therefore, the boundary conditions on the de.tation velocity are homogeneous.

In cylindnical coordinates r, @, 2, the cquations for the velocity components vy = (v,, vy, v,)
and pressure py take the form

; Jdv dv.
L9 rey e L2220 25 0, (1a)
r dr r dJo dz
' -ié.-o ) _ O gy, Y2 0% 1b
D'y, - 201 4 7,)vg + 2740, ER + R[D v, — T s ] (1b)
P v 1 Ipy 1 2 dv,
Divg+ 22 Lot 4 1), - 27,0, = - 2P Lipn, o Ze 20 le
L¢ -+ ; ( T")U T Uz ; ad; I{I ¢ i i OCS ] ( )
8
Div, 4 27,0, - 21,0, == - (;74 - 2r7, 4 -I—-I)”L". : (1d)
wlhere
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' g 4 Vg @ 9 2 2 o2 2
D’=—+——+v,£—+—l——;c—-+v.—;——, D":aq+i_¥_‘-l_q_u__'_4_(_)_.)_'
ot ¢ ar . r d¢ td:z or* r dr r- 9 dz*
and '
T, = —(cos¢ , 74 = ¢sind , 7, = repsf , « = rsinl . B (2)
The effect of nutation is comprised in the é-periodic force term - 2r7, == 2rcos¢ in thé z-
momentum equation (1d). For ¢ = 0, equations (1) support the trivial solution v, = 0, p; = 0.
The system supports the following symmetries: '
v(r,¢4m. - z)= v (r. 0, z). vur.o4m, =) - tfo(r.d',;;). (3ab)
v(r,¢+m,-z) = -u(r.b.z2), pylr.ovm. -2) = pilr.o.z). (3c.d)

3. Spectral Approximations for a Finite-Length Cylinder

The results of the analytical work suggest that a good approximation to the flow in a finite
cylinder can be obtained by solving linearized versions of equations (1). Lincarization can be performed

in different ways. The first is a lincarization in ¢. Beyond cqs. (3). the resulting equations support the
additional symmetries

va(r,d4m,2) = -vy(r,é.z), py(r, ¢+r.z) == -p,,(r.c'r.:)‘. ()

These relations permit useful checks on the results of the spectral code. A second lineir svstem can be
obtained by linearization in the components of v,. This linearization retains counling terms such as
274v, in eq. (1b) which destroy the symmetries (). The second system can be considered a special case
with v}o) = pd(o) = 0 of a third linearization about some known solution v ", p®. This third pro-

cedure is very efficient if the solution is sought for a densely spaced sequence of parameter combinations
as in flight simulations.

The algebraic form of the equations is obtained by use of spectral collocation. The velocity com-
ponents are expressed in the form

K L M :
ve=23 2 X Uum RG(r) Fi(é) Zm(z/N). (5)
k=11l=1m=1

with similar expressions for vy, v,, and p;. The azimuthal functions are F; = cos i(l - 1)¢/2] for odd’
l, F =sin[l¢/2] for even [, where | = 1,2, --- L, and L is odd. The azimuthal collocation
points are equidistant, ¢, = 2x({ - 1)/L . The expansion functions in radial and axial direction
depend on the index / and may be different for the variables v, , »,, v.. and p;. They are combina-
tions of even or odd Chebyshev polynomials such that (i) the homogeneous boundary conditions are
implicitly satisfied, (ii) the symmetry conditions (3) are satisfied, and (iii) the limit values of the vari-
ables for r — 0 (i. e. the values on the axis) are independent of ¢. The collocation points are r, =

cos [(2k — I)r AK}, k = 1,2, --- I, and z, /A = cos|2m - Dr /M| m = 1,2, -+ A, Con-
sequently, 0 < r., and no points are located on the axis. Also, rp < 1. z,, < X\, such that no points
are located on the surface. This choice prevents the occurrence of spurious pressure terms and avoids
the difficulties associated with corners and axis. The points are concentrated near the boundary such
that higher resolution in this region is obtained without additional coordinate stretching.

The spectral collocation method converts the linear system of partial diffcrential equations derived
from egs. (1) into an algebraic system of dimension N = 4-K -L -M for the coeflicients iy, Cim .,
Wetm » a0d py, of v vy, v, and py, respectively. The linear algebraic systemn for the expansion
coefficients is solved by Gauss ehmination with partial pivoting. The subroutine used retains all data
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required to solve the same system with a new right-hand side without repeating the costly reduction of
the matrix to upper triangular form. Once the solution is obtained. a new right-hand side is formed
taking the nonlinear terms into account and the system is iteratively solved until sufficient ac:uracy is-
achicved. The procedure is equivalent to the modified Newton iteration (without updating the Jaco-
bian in cvery step) and converges rapidly since the nonlincar corrections to the velosity are small while

the pressure appears linear in equations (1).

4. Results of the Spectral Code

In the following, we present some results for 2 -— 14.95, 0 == 20° . r ==.0.1667. and X = 4.368
which results in ¢ = 0.057. The results are for K = [ - M - 5. and consequently N = 500. Fig-

ure | shows the axial and radial velocities in the planes ¢ = 45° and 135°. Only the upper half,

z 2 0, of the cylinder is shown; the lower half is governed by the svmmetries (3). The velocity distri-
bution at 2z = 0 agrees well with the results of the perturbation analvsis and computations with the
Sandia code. Near the end walls, the solution scems to be more realistic and more accurate than the
Sandia results. Good resolution of the velocity gradients and pressure at the boundary is important for
accurate calculations of the moments. “The figure also verifies the existence of a predominantly axial
flow over most of the cylinder length, except within a region of the order of the radius near the end

wall. Linear and nonlinear velocity distributions are hardly distinguishable. Clearly visible is the turn-
ing of the flow near the end wall.

The pressure distribution in the plane 6 = 45° is shown in figure 2 with thc heavy lines markmg
positive values. Remarkable are the regions of high and low pressure in the corners near ¢ = 45° and
¢ == 225°, respectively, which produce large pressure contributions to the moments about r-axis and
Y -axis. R

The dominant components of velocity and pressure fields are azimuthally periodic with period 2%
The harmonics are small, indicating the small effect of nonlinearity. The only important nonlinear term
is the aperiodic mean flow. The axial and radial mean velocity field is given in figure 3. This streaming
term produces a toroidal mean motion near the end wall.

The despin moment about the z-axis is largely governed by the shear stress at the side wall
caused by the azimuthal mean velocity. This component shows little variation over about 90% of the
cylinder length. This result explains the good agreement of our earlier analytical results for the despin
moment % with experimental and computational data. Besides the calculation of the moments from
local velocity gradients and pressures at the surface, we have also obtained these moments from volume
integrals involving the velocity only. This second method provides accurate values of the moments
from low-resolution spectral approximations that would be insufficient when using the surface values.
Reasonable accuracy of the moments can be obtained with K = M = 4. L = 3. This approxlmatlon
has been used to obtain the data shown in figure 4 togetner with result.s of the Sandia code 4 and the
analytical results. © The region of maximuvm despin moment will be subject to further study with hlgher

resolution.

5. Discussion

The finite-difference code developed at Sandia Laboratories 3-4 provides the steady solution at
11 X 24 X 21 grid points in r. 4. z-direction by integrating over typically 10* to 8 10* time steps, 2
task that requires 6 to 48 minutes CPU time on a Cray-1S. This requirement translates into 6 to 48
days on the MCOR010 based Apollo DN300 work station used for our studies. The result consists of
over 22,000 values for velocities and pressure. Strikwerda & Nagel ? briefly describe a code using finite
differences 10 radial and axial directions and pseudospectral differencing in the azimuthal direction.
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Nonuniform grids are introduced for increased resolution near the walls. The difference cquations are
solved by an iterative method based on successive over-relaxation. The computer time required is com-
parable to that of the Sandia code (Nusca, BRL, personal communication). The relative merits of the
two codes, espec:.!ly with respect to the captured range of Reynolds numbers are vet concealed.

The experience with the present version of the spectral code shows that high performance can be
achieved. The reported run with N = 500 requires about 3 hours on an Apollo DN300 work station.
The solution is obtained in semi-analytical form with only .\ 500 numerical cocfficients. This low
data volume is very attractive for communication with remote supercomputers. The code s well suited
for vectorization, since practically all CPU time is spent on constructing and solving an algebraic sys-
tem. The code demands larger memory than other codes beeause G1-bit arthmetic s highly recom-
mended for spectral methods in general, and the algebraic system requires N (N + 1) words of storage.
Nowadays, this memory requirement appears acceptable even if higher resolution is desired. Caleula-
tion of the moments for figure 4 (/N = 192) requires less than 12 minutes per point.

Finally, there are still ways to improve the performance. “I'he solution process cain be split into
two levels, the first of which calculates only the velocity components from vorticity cquations while the
pressure is obtained a posteriori by solving the Poisson equation. For calculating the moments by
volume integrals, only the first step is required. We expect that the next version of our code will pro-
vide accurate solutions for the moments in less than 1 minute on an MCG6R020,68881 based work sta-
tion and can be used as an efficient subroutine in flight simulators.
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Figure 2. Contour plot of the pressure ficld in the
plane o = 15" for = 2> 0. Levels every 0.0025.
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NUMERICAL STUDY OF THE FLOW IN A SPINNING AND NUTATING CYLINDER

Thorwald Herp'ert *
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Department of Engincering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virguma 240061

ABSTRACT

Artillery shells with liquid payloads may experience a
severe flight instability owing to the moments
exerted by the viscous fluid motion in the cylindrical
payload container. Incorporation of these moments
nto flight simulators as a routine design tool requires
a highly efficient code for solving the Navier-Stokes
equations. We describe a spectral collocation method
which is based cn Chebyshev-Fourier-Chebyshev
expansions in the radial, azimuthal, and axial direc-
tion. The method exploits the symmetries of the
problem. Using a volume approach and an analytical
result by Rosenblat, accurate moments are obtained
in small fractions of the time required by other
codes. Solutions for the steady motion are presented
and compared with numerical and experimental data.
The performance of our code is evaluated in com-
parison with other computer codes.

Introduction

Gyros and rotating fuids often exhibit unex-
pected behavior. In the past, it has been recognized
that spin-stabilized shells with liquid payloads can
suffer a dynamical instability originating from reso-
nance with inertial waves.! Since this phenomenon is
basically inviscid and is routinely avoided by proper
design, it was surprising to observe in some cases
another type of instability which is characterized by
an increase in nutation (or yaw) angle and a simui-
taneous loss in spin rate. The rapid drop in spin rate
1s clearly a viscous phenomenon, and laboratory
experiments, ccmputational results, and field tests
have meanwhile shown that this instability is caused
by the nutation-induced fluid motion in a certain
range of relatively small Reynolds
Although 1n special cases this instability has been
overcome by trial and error, future design of renable

numbers.
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projectiles would take profit from the opportunity to
calculate the liquid moments and to account for
these moments in flight simulators. The empirical
data base ? is sparse, however, and computational
methods in use 3.4.56 are rather demanding. An
evaluation and verification of the codes by Vaughn et
al. 4 and Strikwerda & Nagel 5 is currently conducted
at BRL.? Typical computer times for a single case
are in the range of 6-12 hours on VAX-class
machines. Six-degree-of-freedom flight simulators 8
typically usc 2:10° time steps over the flight time of
the order of 30 seconds. Study of the interaction of
the interior fluid motion with the exterior aeroballis-
tics consequently requires either a very fast subrou-
tine for calculating the liquid moments or interpola~
tion in 2 multi-dimensional table of 500-1000 & pre-
calculated values. Hence, flight simulations for
liquid-filled shells are currently a very expensive tool
and are not ready for routine applications.

In previous work ¥ we conducted a theoretical
analysis which aimed at the origin of the viscous des-
pin (negative roll) moment in cylinders of large
aspect ratio. This analysis showed that the deviation
from solid body rotation is governed by a small
parameter, ¢ = ({} /w)sind, involving the nutation
rate {1, the nutation angle 4, and the spin rate w. A
solution of the linearized equations was developed for
a finite-length segment of an infinitely long cylinder,
i. e. disregarding the end walls of the cylinder. Velo-
city field and the viscous components of the moments
were obtained in closed form. The velocity field con-
sists only of an axial component of arder ¢ {¢) which
is the prominent fezture of the fluid motion and pro-
duces a negative roll moment of order O (€?) owing
to Coriolis forces. Although this roll moment is in
reasonable agreement with experimental and compu-
tational data, the original analysis accounted only for
the viscous part of the yaw and pitch moment.
These latter moments contain essential contributions
of the pressure 4 that originate from the turning of
the flow near the end walls and were not captured by
the linear analysis The eflect of nonlinearity was
studied 10 by using perturbation expansions in ¢ and
was found to be small except for an aperiodic stream-
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ing term in the azimuthal direction.

Athough the perturbation approach cannot cap-
ture the pressure field, it provides valuable insight
into the structure of voth equations and solution.
The analvtical wark suzgests the use of a numerical
method that exploits (i) the near-linearity of the
governing cquations and (ii) the smoolhness of the
solution in the relevant range of Reynolds numbers.
We have therefore pursued a simple concept that is
open to further refinements. We use Chebyshev-
Fourier-Chebyshev expansions in r, ¢, 2z, respec-
tively, and convert the linearized equations into an
algebraic system for the expansion coeflicients.
Linearization can be performed about the trivial
solution or any other known solution, e. g. at neigh-
boring parameters. The sclution of the linear alge-
braic system is used as initial approximation for
iterative improvement by the modified Newton
method. The feasibility of this approach has been
demonstrated !! with a crude spectral approximation
to the solution. Problems in calculating the pressure
that arise from the invalidity of the basic equations
in the corners joining the flat end walls to the
cylindrical side wall have meanwhile been cver-
come.12 The present version of the code exploits the
diametral symmetry of the flow about the center of
the cylinder and allows for higher resolution at mod-
est CPU times. This version can also be adapted for
the analysis of unsteady problems. Dramatic
increase in efficiency has recently been achieved 13 by
combining an analytical result of Rosenblat ¢t al. §
with a volume formulation for calculating the liquid
moments. The moments can be obtained from only
the simply periodic components of the axial velocity
and the azimuthal streaming term. A fast subroutine
for ﬂight\ simulations exploits the analytical results.
IFor more accurate studies, complete tables of
moments can be calculated in a few hours on a
VAX-type computer.

Governing Equations

We consider the steady motion of a fluid of
density p and viscosity g in a cylinder of radius a
and length 2¢ in an aeroballistic coordinate system
z,y,2,where z is the axis of the cylinder, as shown
in Figure 1. The 1nertial axis Z in flight direction
and the z-axis enclose the nutation angle §. The
cylinder rotates with the spin rate w about z while
the z,z-plane rotates with the nutation rate 1
about the Z-axis. Spin rate w and nutation tate {}
are constant. All quantities are madc nondimen-
sional using @ . w, and p fur scaling length, time, and
mass, respectively. The solution depends on four

uondimensional paramneters: aspect ratio 5 = ¢ 1,
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nutation angle 6, frequency r = {1 /w. and Reynolds
number Re = pwa?/u. The aspect ratio euiers the
solution only through the boundary conditions at the
cud walls of the eylindor, The inction is subjoct Lo
the no-slip and no-penctration conditions at the
cylinder walls. Since the velocity field degenerates for
cither w =10, @ =0, § =0, or y—oo to rigid-
body rotation of the fluid, it is appropriate to con-
centrate on the deviation v¢ of the velocity from
rigid-body rotation v’

v=1vw' +v' vi=re,,

(1)

where e, is the azimuthal unit vector. The boundary
conditions on v¢ are homogeneous. The pressure
field is split according to

p=0p" +p‘, (2a)

p" o= r 147, P+ r% 2+ 2%2 - 2rzer, , (2b)
where 1, = -ecosg, 714, = €sing, 71, = rcosf,
¢ rsind. The pressure p” differs from the pres-
sure in rigid-body rotation. The form of p’ is

chosen such that the reduced pressure p* appears
only in the z-momentum equation.

In cylindrical coordinates r, ¢, z, the equations
for the velocity components v¢ = (v,, vy, v,) and
pressure p ¢ take the form

14 1 9vg v,
—_—_— — e — 3
r Br(rv') M r 0¢ d: 0. (3a)
Diu, - 22
vp - — - 2l +7,)u, + 21y, =
ap*! 1 v, o dv,
4 ——[D"y. - — -~ S}, (3b
o t R T g ) B
D v v, _
ve + — +2(1+7,)v, - 2r,v, =
_Lot L, e 200 gy
r d¢ Re ¢ r? r2 3¢ '
D'vy, +2r,vy- 27,0, =
dp* 1
- % - 2rr, + ED”U, , (3d)
where
A 2] i) vy J
T e lam —_— . —_— — _
b=t ee " e T T e TGz
pr_2 1o L& &
9r? r dr r? 9¢? 9:%
The primary effect of nutation is the ¢-periodic force
term - 2r 7, = 2¢rcos$ in the z-momentum equa-

tion (3d). For ¢ = 0, equations {3) have the trivial
solution vé = 0, p¢ == 0. The system supports
the following symmetrics:




v(r,é+m, —z)= v (r,¢,2), (4a)
velr,o-m, —2) = v,(r, ¢, 2), (4b)
vir dm, s)~ o (r, 4, 1), (4]
pilrio+m, —z)==p*(r, 0, 2) (4d)

Some Analytica! Results

The steady flow in a relatively long ~vlinder
(aspect ratio n > 4) at low Reynolds number is
expected to exhibit little axiai variation over most of
the cylinder length. Previous work ° has therefore
relaxed the boundary conditions at the end walls and
studied the steady flow in a finite segment of an
infiniteiy long cylinder.

the physical situations of interest.
¢ = (Q )sinf s a small parameter, and conse-
quently, it is reasonable to pursue a perturuuiion
expansion in €. This provides v, in the form

In

vi= ie"v(')(r $)

(5)

and similar expressions for p¢. The development of
expressions for the expansion coefficients v(*) from
equations (3) leads Lo an alternating pattern:

{0,0,v,"), n odd,
v — {

(v,* v, ) 0), n even. (6)
and the components of v{*) take the form
. N2 n
0 = 3 (4 ¢ S Gy eI (T2)

m =]

vi")

(s +1)/2
n)

A2 . "
Vno + E (vnm e'?me 4 Unm e-“’nd) ' (."b)

me |

vx( (wnm ¢ Fam-1)e + 'I’nm ¢ -i(em- ”‘) '(7C)

m =]

where the tilde denotes the complex conjugate. The
aperiodic term in v, "’ is suppressed by the con-
tinuity equation. The r-dependent coefficient func-
tions in Eqgs. (7) are required to satisly homogeneous
boundary conditions at r 1 and to be finite at the

axs r = 0.

The axial velocity at order 0(¢) can be found in
analytical form,

v

I lor
[—- J - (%)

“ T a)

i,

where [, denotes the modified Bessel function, and
a= (1 +1)Re 2)""2  This solution
arbitrary Reynolds number but may be unstable as
Re

the dominating feature of the flow in a long cvlinder

13 vald for
exceeds some critical value. This component 1s

The 1ateresting preperties of the assomate:d flow fieid

Appendix D

40

are discussed by Herbert.?

At order O (e?), comparison of the equation for
vq with the imaginary part of the equation for w,,
tninediately shows that the aperiodic component ol
the azunuthal velocity is

-2 Im|w,(r) .

()

The @-penodic components are governed by a cou-
pled ser. of inhomogeneous differential equstions with
Essential simplification at the
expense of increasing the order of differentiation
results from eliminating vy, by use -f the continuity
equation. With some eflort, the radial velocity com-
ponent of O (¢?) can be found in closed [ ir:n,

vog (r)

variable coeflicients.

un(s) = —leiJols) + ea¥ o)

2i vZ Joe ./\/5)
J.(BIVR)

L]
where s = 8r, 8 = (i - 1)Re'”?, and J,, J,, and
Y, arc Bessel functions. The coefficients ¢, ¢4, ¢,
and ¢, can be determined numerically 10 In view of
the effort involved in deriving the closed form solu-
tion for ug, and the ultimate need to determine the
coefficients numerically, the differential equations for
the third-order components were solved by means of
a spectral collocation method.

€4

83

+ €48 +

(10)

The motion is governed by the axial component
w,, 2t order O(¢). Of the higher order terms, only
the aperiodic term vy is substantial. In the
cylinder’'s center section, these terms are in good
agreement with computational results. All the other
terms are not only of order O (1) but in fact less than
unity, assuring rapid convergence of the perturbation
The contribution of wj; to the despin
moment is negligible. The $-periodic terms oscillate
about zero as r varies between 0 < r < [. Accu-
rate representation of single high-order terms by
radial Chebyshev series may require numerous expan-
sion functions. For the total velocity field, however,
the error in representing these terms is of little
importance. At Reynolds numbers in the range of
maximum despin moment, reasonably accurate
approximations can be obtained with only a few
pelvnomials in radial direction. In the azimuthal
direction, the solution 1s governed by terms periodic
in @, and by the aperiodic term vy Fourier series
with three or five modes, therefore, provide approxi-
mations of sufficient accuracy f{or practical purpose.
The perturbation analysis clearly shows that the
main features of the flow are governed by the hnear
O (e} part of equations (3) with small corrections for

sertes.

nonlinearity. This property will not change for a

finite-length cylinder.




Spectral Approximations

The results of the analytical work suggest that
a good approximation to the flow in a finite cylinder
can be obtained by solving linearized versions of
equations (3). ULirearization can be performed in
different ways. The first 1s a linearization in ¢.
Besides Eqs. (1), the resulting cquations support
additional symmetries:
V‘(r,d)-é—rr,:)-—::—v‘(r,o.:), (t1a)
pilroo+m z)==-p*(r.6,2). (11b)

These relations permit useful checks on the resuits of
the spectral code. A second linear system can be
obtained by linearization in the components of v*.
This linearization retains coupling terms such as
274y, in Eq. (3b) which destroy the sym.metries (11).
The second system can be considered a special case
with v¢ = 0 of a linearization about »ome known
solution v¢. The latter procedure is very efficient if
the solutiva ia sought for a densely spaced sequence
of parameter combinaticis o5 in flight simulations.

The algebraic {crm of the equations ic obtained

by use of a spectral collocation method. The velocity
components are expressed in the form

K L M :
v, =kL Yo Y win Ri(r) Filo) Zm(—i) . (12)
=li=]m =] !

with similar expressions for v,, v,, and p?. The
azimuthal functions are

| -
cos

lo‘, { odd ,
F= (13)

o1
sin ‘.,—¢' { even .

-

The azimuthal coilocation points are equidistant.
S, =2x({ - 1)L, 1 =142 - L. (14)
and L 1s odd.

In a first version of the code, radial and ax.al
collocation peints are located at the maxima of the
highest Chebyshev polynomials. The boundary con-
ditions are implemented by replacing three of the
four differential equations in the boundary points.
The question then 1s which equation should be
retained and where the condition on the pressure,
eg. p¢ = 0. should be applied. Trial-and-error
ieads to numerous cases with ill-determir:d matrices
or zero determinant. In other cases, a correct solu-
tion for the velocity field is obtained, but the pres-
sure contamns a non-physical spurious term. Prob-
lems with spectral calculaticns of the pressure n
closed domains with corners are well-known but the
reports on their onigin and methods for solution are

Appendix D

rather unspecific. YWe have therefore performed a
detailed analysis of the low in a square driven by an
internal force field. This simpler two-dimensional
problemn exlibits ull charsctoristics - including the
spurious pressure term - of the original problem.
Detailed results of this study will be reported clse-
where 14 The study reveais that the spurious term
vanishes in all collocation points except the corners,
where it may assume arbitrary values. The term can
be suppressed by retaining in the corners one of the
momentum equations that contain the derivative of
the pressure in the direction of the boundary.

In a second version of the spectral code, the
problems of the pressure calculation have been
avoided by using a different set of collocation points.
The expansion functions in radial and axial direction
depend on the index /| and may be different for the
variables v,, v,, v,, and p¢. They are combinations
of even or odd Chebyshev puiynoniais such Lhat

(1) the homogencous boundary ceonditions are
implicitly satisfied,

{11} the symmetry conditions (4) are satisfied, and

(i) the limit value of the variables for r — QO (i. e.
the value on the axis) is indenendent of 4.

The collocation points are

r, = sin k2;{11r, k=12 --K, (15a)
Zm .. m -1

— RS = -+ M . (15b
; sin — T, m 1, 2, (15b)

Consequently 0 < r,, and no points are located on
the axis. Also, r, < 1, z,, < n such that no points
are located on the surface. The points ia iadial and
axial direction are concentrated near the boundery
such that high resolution in this region is obtained
without additional coordinate stretching. Thus the
boundary layers forming at higher Reynolds number
can be resoived by slightly increasing K and M.

The spectral collocation method converts the
linear system of partial differential equations derived
from Egs. (3) into an algebraic system of dimension
N = K-l -M for the coefficients uym, Vam , Waim
and pym of v,, v,, v,, and p?, respectively. The
linear system for the expansion coeflicients is solved
by Gauss elimination with partial pivoting. The sub-
routine used retains all data required to solve the
same svstem with a new right-hand side without
repeating the costly reduction of the matrix to upper
triangular form. Once the solution is obtained, a
new night-hand side is formed by taking the non-
linear terms into account and the system 1is itera-
tively solved until sufficient accuracy is achieved
The procedure 1s equivalent to the modified Newton
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1iteration (without updating the Jacobian in every
step) and converges rapidly since the nonlinear
corrections to the velocity are small while the pres-
aure appears lineur in equationn (4).

Results for Velocity and Pressure

In the following, we present some results for

the velocity and pressure fields at £ = 20°,
T = 0.16667, and n = 4.368 which results in
¢ = 0.057. The results are for I = 6, L == 5, and

M = 8, and consequently N == 960. Calculation of
a single solution with this high resolution requires
about 2 minutes on a Cray-1S. Figure 2 shows the
axial and radial velocities in the planes ¢ = 45° and
¢ = 133° at Re = 20. Oniy the upper hall.
2 20, of the cylinder is shown; the lower half 1s
governed by the symmetries (4). The scale values
give the velocity per unit length where the diameter
1s six units. The velocity distnibution at z == 0
with the
aralysis and computations with the Sandia code.”
Near the end walis, the solution i1s more realistic and
inore accurate than the Sandia results. The figure
also verifies the existence of a predominantly axial
flow over most of the cylinder length, except within a
region oi e order of the radius neaz- the end wall.

agrees well results of the perturbation

Lioezr and nonlinear veloaity distributions are hardiy
distinguishable.
flow

Clearly visible is the turning of the
near the end wall. While the flow appears
steady in the cocrdinate system chosen, the velocity
field describes in fact an oscillatory motion of fluid
elements about their near-circular orbit.

The pressure distributions for the same case are
shown 1n Figure 3 with the heavy lires indicating
positive Remarkable is the formation of
regions of high and low pressure in the corner near
© = 35° and ¢ == [35°.
lurge contributions o the moments about z axis and
y-ans. Lxcept in this region nicar the end walls, the
The
azimuthal pesition of extremuin pressure changes
from ¢ = 0 for small values of Re to ¢ == 90° at
Re = 1000,

values.

respectively, which produce

vanatiorn of the pressure s relatively weak.

The dominant components of velocity and pres-
sure fields are azimuthally periodic with period 2.
The harinonies are smadl, indicating the smalil effect
the Reynclds
The or!, 1mportant nonlinear term 1s the

of wnoulimearity n range of low
NuILLErs.
aperiodic mean flow This 1s clearly shown by Figure
4 wiich gives the azimuthal velocity in the center
plae z == 0 The apenodic component is opposite
to the rigd-body rotation and exerts a negative roil

thoaent Uhicugh the wail shear stress 7,, The axial

Ancendiry D

and radial mean velocity field is given in Figure 5.
This streaming term exhibits a toroidal motion near
the end in each half of the c¢ylinder and causes a slow
Jdetfe of fhuid elomienta with roapoct to circular arbita
This mean velocity produces the symmetric pattern
in Hlow visualizat:ons % at low Reynolds nuinbers.

At the higher Reynolda number e == 300, the
maximum axial velocity appears at ¢ = 90°. As
shown n [Figure 6, the flow in the plane ¢ = 90°
breaks up into two swirls, one in each halfl of the
cylinder, with little flow across the plane z = 0.
Three weak swirls develop in the plane ¢ = 0 such
that the velocity field is reminiscent of a chain with
five links. Notably, the break-up into cells i1s res-
tricted to an inner region of the cylinder. The
motion in the pronounced boundary layer visible in
the plane ¢ = 0 does not follow the cellular struc-
ture and may have a direction opposite to the coie
flow. The pressure variation 18 characteristically
different from that at low Reynolds number. Figure
7 shows the strong variation and the formation of an
almost sy minetric pattern along the cylinder in the
plane ¢ = 0, while the variation at ¢ = 90° is
rather weak. This pressure ficld explains the void
observations of Miller 18 which show a wavy distor-
tion of the void in the plane ¢ = 0 at high Reynolds
numbers. The steep and opposite pressure gradients
the cylinder axis near z/n = 025 and
z.'n = 075 displace the void near these positions in
opposite directions along the diameter at ¢ == - 15°.

across

Calculation of the Liquid Moments

Conservation cf angular momentum for the
steady flow in a control volume V with surface S
rotating with constant rate { about a fixed axis
requires

M - fc (r XxF)dS = { rX (20 Xv)pdV

+ [ rx 0% (@ xr)pdV
1

= [(r xvip(v-dS)
S

(16)

where the velocity v is measured relative to the aero-
Lallistic frame. On the left-hand side, M is the resul-
tant torque on the control volume, r i1s the position
vector, and F the stress acting on the cyhnder. The
presence and meaning of certain terms depend on the
choice of the control velume. The surface integral on
the right-hand side of Eq. (16) vanishes if the surface
of the control volume is clesed.

For ease of practical application, we express the
moment M == (M, M, . M.) in terins of cartesian
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-y - uts whieh piovide yaw, pitch, and rell
moment, respectively. Analogue to Eq. (1) we
decompose the moments into

M =M + M, (17)

where M® corresponds to the pure rigid-body motion

while M¢ originates from the deviation velocity and
pressure. For the cylindrical control volume, the
rigid-body rotation causes only a pitch component
1 2
My = 2menll + ——(= - =%}, (18
v nl tand ( 2 3 n*)| (18)

while M = M = 0. Note that M is dimensionless;
the reference moment is paSw?.

The evaluation of the components of M¢ bears
some ambiguity that can be exploited for advantages.
Previous computational work 3.4.5.8 employed a con-
trol volume consisting of an “empty’ closed cylinder
with snly the pressure and stresses acting on the
inside surface. In this “surface approach,’” the right
hand side of Eq. (16) vanishes and the moments are
obtained from the stresses F at the inside wall of the
contiol  volume. choose a ‘‘volume
approach’ that bears great advantages especially for
computational work.

liere, we

We consider a control volume consisting of a
solid cylindrical surface completely enclosing the
liquid. The moment calculation for this *‘full” con-
trol volume rests on the relation

M = [ r x(20 xXv!)pdV

14

(19)

Using analytical relations derived by Rosenblat et
al % the components of M# can be shown to take the
form

M= - I ccsb (20a)
MJ = I;sind - I, cosd {20b)
MG = 1,sn8 (20c)
\Vh(.'rC
Iy = f (v, 080 - vysing)rdrd ddz , (21a)
v
I= Yfu,r%rdod (21b
= ] vgridrd dd:r (21b)
29,
Iy = - l' r,sing ridrd @ d: (21¢)
v
1,4:'1|, (Qld]
Iinaily we obtain the moments in the form
ror |
.\.[:4 = 7[;:;10 Jq{ j; v, ricosgdrd odz . (22a)
noox

r
Lt

M=l ] vardrd e
[

n 2r |
f)
+ L;;o f"{_{’ v, risingdrd gdz ,  (22b)

A — Aifiann . (22¢)

The volume intcgral approach leads to handy expres-
sions which involve only the radial and azimuthn!
velocity componcnts. Integration over ¢ reduces ihe
requircments in fact tc the knowledge of the
aperiodic component of v, and the simply periodic
components of v,. Therefore, the volume approach
can also be applied to the analytical results given
above and provides yaw and pitch moments without
explicit knowledge of the pressure.

Results for the Liquid Moments

While velocity and pressure fields are primanly
of basic fluid mechanical interest, the practical need
for the moments dictates the measure for efficiency
of the code. The moments derived from the volume
approach and the surface approach applied to the
same spectral solutions 1s shown in Tables 1 and 2,
cespectively. The Reynolds number Re = 20 is in
the range of maximum despin noment M, .

Table 1. Volume Approach

n = 4368 7= 1667 # = 20 Re =20
K L M M, M, M,

3 3 3 0.08305 0.07475 0.03023
4 3 4 0.08260 0.07334 0.03008
S 3 5 0.08300 0.07332 0.03021
5 3 6 0.08317 0.07353  0.03027
6 3 5 0.08300 0.07332 9.03021
6 3 6 008317 0.07353 0.03027
4 3 4 0.08280 0.07353 0.03014
5 5 5 0.08322 007335 0.03029
6 5 6 0.08340 0.07374 0.03035
6 S 8 0.08335 0.07385 0.03034

It 1s obvious that the volume approach provides
results of superior guality and more rapid conver-
gence. The required (absolute) accuracy of 107° for
engineering applications can be achieved with the
low truncation K = 4, L = 3, M = 4. This accu-
racy has to be seen in the light of considerable uncer-
tainty in the meoments governing the exterior aero-
dyvramics of the projectile. We note. however, that
an increase in the aspect ratio may require additional
expansion functions in axial direction while increas-
ing Reynolds number requires highes resolution 1in

bhoth radial and axial direction Fizure 9 gives the
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Table 2. Surface Approach

e

n = 4368 r = 1667 7 — 20 Re — 20
K L M M, M, M,

3 3 3 0.07394  0.09396  0.03308
4 3 q 0.07247 0.08133 0.02002
5 3 S 0.07904 0.07291  0.03024
5 3 6 0.08178 0.07039 0.03028
6 3 5 0.07864 0.07354 0.03023
6 3 6 0.08137 0.07115 0.03027
4 5 4 0.07289 0.08354 0.02999
5 5 5 0.07894 0.077GC  T.03032
6 5 6 0.08152 0.07491 0.03036
6 5 8 0.08289 0.07415 0.03034

comparison of the roll moments for a wide range of
Reynolds numbers with the experimental results of
Miller 2 and with computational results.: 8 ‘The devi-
ation of the results of the Sandia code is due to
using inappropriate formulas for the moments in the
nutating coordinate system.” The agreement with the
other computational data is good. Test runs with
high resolution up to Re = 300 indicate that the
small errors are due to insufficient resolution of the
finite-element code 8 in combination with the surface
approach for the moments. The experiments were
made in a range of spin rates w between 2000 and
4000 rpm. While w = 3000 rpm has been used in
figure 9, assumption of a lower value would improve
the comparison with respect to the maximum values.
Figure 10 shows a similar comparison for the yaw
and pitch moments. The results of the Sandia code
are suppressed since they suffer from a dimensional
inconsistency.” While the agreement for the yaw
moment at high Reynolds numbers is surprisingly
good, the deviation in the pitch moment is likely to
originate from insufficient resolution of the steep
pressure gradients. This source of discretization
errors has been eliminated in the results of the spec-
tral code.

The effect of nonlinearity in ¢ on the yaw and
pitch moments is shown in Figure 11 for different
nutation angles ¢ at fixed 7 = 1 and different values
of v at § = 20°. The figure shows the ratio of the
nonlinear to the lincar solution. In absence of non-
linearity all points should be located on the horizon-
tal lines. Yaw and roll moments are largely indepen-
dent of ¢. However, the nonlinear effect on the pitch
moment is only negligible at small nutation angles 0
as they may occur for soft lavncl. conditions and
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stable projectile flight.

Figure 12 shows the dependence of the yaw and
piteh moment:, per unit length (the roll moment is
proportional to M;) on the aspect ratio of the
cylinder and compares with results of the code writ-
ten by Strikwerda & Nagel.®7 and the -analytien!
results Tor 1y — vo. This dingram indicntes that n
reduction in the overall liquid moments for a giv"n
fluid mass can he achieved by splitting the cylindri-
cal volume into slices of low aspect ratio.

Discussion

The codes previously in use may serve for
establishing some basic results but are too inefficient
(and insufficiently verified) for routine applications.
The finite-difference code developed at- Sandia
Laboratories 3 4 rests on Chorin’s method of artificial-
compressibility and provides the steady sclution at
11 X 24 X21 grid points in r, ¢, z-direction by
integrating over typically 10* to 8:10' time steps, a
task that requires 6 to 48 minutes of CPU time on a
Cray-15. The result consists of over 22,000 values of
the velocities v, , v4, v, and the pressure p .

Strikwerda & Nagel 5 briefly describe a code
using finite differences in radial and axial direction
and pseudospectral differencing in the azimuthal-
direction. Nonuniform grids are introduced for
increased resolution near the walls. The diference
equations are solved by an iterative method based on
successive over-relaxation. The computer time
required is comparable to that of the Sandia code. A
thorough evaluation of the two codes is currently
conducted at BRL.7

The experience with the present version of the
spectral code shows that high performance can be
achieved. The solution is obtained in semi-analytical
form with only N == 4-K LM (typically less than
500) numerical coefficients. This low data volume is
especially attractive for storage and for commurica-
tion with rcmote supercomputers. The code is very
well suited for vectorization, since practically all
CPU time is spent on constructing and solving an
algebraic system. The code demands larger memory
than other cades, because 64-bit arithmetic is highly
reccommended for spectral methods in general, and
the algebraic system requires N{N + 1) words of
storage. A run with N = 500 requires about 2
Mbyte of memory and can easily be carried out on
nowadays ecngineering workstations within a few
minutes. (Most of our work was done on an
MC68010-based Apollo DN300 workstation. Runs
with N == 500 require 160 minutes, while moment
caleulations with N == 192 require less than 3
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fiiihutes per poiiil.] Since the memory requirement is
acceptable even if higher resolution is desired, the
method applied here i1s a viable alternative in
numeroun other luid wechnnienl problema The abit-
ity to obtun neeurinte solutions for the steady prob-
lem directly from {large) algebraie system benrs valu-
able potential to answer the question whether the
steady solution is stable, and allows analysis of
The
design of a reliable code for the unsteady problem

unsteady motions with 1mplicit time-stepping.

can take profit from the knowledge of the eigenvaluc
spectrum for small unsteady disturbances of the
steady flow.

While the calculation of velocity and pressure
fields provides insight into the physics of the flow,
the practical interest in the moments for the quasi-
steadily changing parameters in flight simulations
can he satisfied with modest amounts of computer
This is due to using the modified Newton
method the
demanded by deteriornting convergence,

time.

which updates Jacobian only when

In general, the volume approach provides much
more accurate results than the surface approach.
This is due to the additional smocthing of fluctuating
data by integrating over three instead of two space
directions and to using fewer, less fluctuating, and
more accurate input. data. The absence of v, in the
) This velocity com-

ponent is small over most of the cylinder length but

volume formulation i1s welcome.

oscillatory in the radial direction (Herbert et al.
1987) with considerable gradients near the wall. Near
. is of the same order as v, with
steep gradients toward the end wall. Inspection of
the veiocity plots of Vaughn et »l.% indicates that
these gradients were difficult to resolve by the finite
differ-nze method. The aperiodic component of v4 15
a reatively small streaming term of smooth and

the end walls, v

almost uniform trhavior along the cylinder axis.
The large azimuthally periodic components of v,
near the end walls do not affect the moment calcula-
tion.

Probably the greatest advantage of the volume
formulation 1s the absence of the pressure from the
moment equations. This property favors the use of
pressire-fres sets of basie equations, e. g. in terms of
vorticity or vestor potential. The smaller number of
dunendent vanables can be exploited for further
increasing the efheieney Even i natural variable
formulations, the pressure is difficult to obtain with
high accuracy because of the invalidity of the equa-
timns an the corners joining the flat end walls to the
cvhindrical cide wall, Az showan in Figure 3, the pres-

Cure iy estme extreina and vary strongly near the

Ropandis
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Ce
corners and, therefore, inaccuracies in this region
may influence yaw and pitch moments. In this con-
text, it is instructive to evaluate the convergence his-
tory of the netificinlly thne-dopendant nothod imple
mented i the Sandin coded While  the  velocity
rapidly renches o quasi-steady  state, nbout, 7570 of
the lerations are spent on dmiproving the pressaee
lield,  We that by of ihe volume
approach or superior  values the
moments could be obtained with less than 20% of
the iterations. It is worthwhile to note that the
analytical results of Rosenblat et al.,% and equations
(21) for the moments are valid for ciosed containers
of more general shape and thus can be used for other
interior low problems.

estimate use

cquivalent for
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Figure 3. Contour plot of the pressure field in the

Figure 4. Vector plot of the azimuthal velocity v,
pianes ¢ = 45° (left) and and ¢ = 135’ (right) at

in the center plane at z == 0, Re == 20 Scale

Re == 20for z > 0. Levels every 0.0025. 0.003.
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velocity v, for Re = 20. Scale 0.002. ties in the planes ¢ = 0° (left, scale 0.05) and

@ = 90° (right, scale 0.2) at Re == 300{or: > 0O

47
Appendix




Figure 7. Contour plot of the pressure field in the Figure 8. Contour plot of the pressure filled in the
planes ¢ = 0° (left) arnd and ¢ = 90° (right) at plane : == 0.25 at Re == 300. Levels every 0.005.
Re == 300 for + > 0. Levels every 0.005.
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FLIGHT SIMULATION FOR LIQUID-FILLED PROJECTILES
Thorwald Herbert

Department of Mechanical Engineering
Department of Aecronautics and Astronautics
The Ohio State University,
Columbus, Ohio 43210

ABSTRACT

The fluid motion in a liquid-filied pavload container can jeopardice the stable flight of spin-
stabilized projectiles. We have developed analytical solutions to obtain estimates and an
efficient numerical (spectral) method to calculate accurate values of the moments exerted by
the liquid on the projectile. These moments have been incorporated into a modified version of
the numerical flight simulator suggested by Vaughn, Oberkampl & Wolfe. Prototype flights
with liquid versus solid payload venify the destabilizing effect of the liquid payload and are
consistent with field tests. Moreover, we demonstrate that such flight simulations can he
expedited on tnday's engineering work stations.

1. Introduction

Well-designed cpin-stabilized projectiles can exhibit a severe flight instability if they carry
a liquid payload. T'wo types of such instability can be excited by the coning motion of the
proje~tile about the trajectory.! The first type originates from resonance with inertial waves
at critica! frequencies (ratios of coning rate Q to spin rate w). This resonance is most pro-
nounced for low-viscosity liquid fills, i.e. at high Reynolds numbers, and depends sensitively on
the cylinder’'s aspect ratio. Theoretical analysis involving the boundary-layer approximation
provides design criteria for sufficiently large Reynolds numbers, £ > 1000, say. We define the
Reynolds number by R = pwa®/u, where p is the density, a the radius of the cylindrical
cavity, and u the viscosity. The second type of instability is of essentially viscous nature and
occurs at iow and medium Reynolds numbers for a wide range of aspect ratios and frequencies.
Theoretical analysis must be based on the Navier-Stokes equations. For a wide range of Rey-
nolds numbers, both types of instaunmty may appear simultaneously.

To enable the design of reliable projectiles, the effects of the liquid payload must be
analyzed and incorporated into the design tools such as the numerical flight simulators. A
prototype flight simulator (FFS6DOF) has been developed by Vaughn ct al.? by integrating a
table of liquid moments into a six-degiee-of-freedom code. The moments were computed with
a Navier-Stokes solver (FFS6)3.-4 The computational demands of this two-level code prevent
application in practice.

In the following we describe two more eflicient procedures to obtain the liguid moments
for integration into flight simulations. The first method rests on quick estimates of the
moments from analytical solutions, the second efficiently calculates accurate moments In a
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wide range of Reynolds numbers by means of a spectral Navier-Stokes code. The development
of a new method for calculating the moments was essential in achieving these goals. One of
the flights studicd by Vaughn et al® is used as an example to show some shortcomings of the
earlier approach and to demonstrate the feasibility of flight simulations for liquid-filled shell=
on engineering work stations.

2. Approximate Solutions

In earlier work,> ® we have roported results of a perturbation analvsis of the nonlincar
problem for the deviation of the velocity from rigid-body rotation 1n a finite segment of an

mfinite cvlinder. The expansion parameter is ¢ = ({1 /«)siné, where 0 is the coning angle.
At the hmear level, Of(¢), we obtain a purely axial flow in the form
v, = -2 Im{{[ {ar Y1 (a) - rie'?; where I, denots the modified Bessel function.
a == (1 — )R 212 and the azimuthal angle o i1s measured from the plane of the twe aves

of rotation. This component v, 1s the dominating feature of the flow in a long eylinder. The
second order terms, O (c?). were also obtained in analytical form. Of these terms. only the
aperiodic component of the azimuthal velocity is relevart to the moments. This component
turns out to he proportional to the component of wv,; in the plane ¢ = 772
Uoo = - 27 Re{l {ar ) (a) - r}. This solution is valid for arbitrary Revnolds number.
Owing to the neglect of the end walls, however, this analytical result is expected to be a rea-
sonable approximation only for cylinders of sufficiently large aspect ratio.

3. Spectral Navier Stokes Code

To calculate the deviation of velocity field, pressure field, and moments from solid-body
motion in a wide range of paramecters for finite-length cylinders. we have developed a fully
spectral code  for solving the Navier-Stokes equations. The code uses Fourier series in the
azimuthal direction and combinations of Chebyshev polynomials in the radial and axial direc-
tions. The combinations are chosen such that the no-penetration and no-slip boundary condi-
tions are impheitly satisfied. By appropriate choice of even or odd polynomials, we avoid
singularities on the axis and implement the symmetries of the solution in the upper and lower
half cylinder. Gauss-Lobatto points are used for collocation such that no points are located cn
a¢ surface nor the axis. This choice avoids the occurrence of spurious pressure terms associ-
ated with the corners of the domain and solves the axis problem in an elegant way.

The solution procedure consists of two basic elements, the first of which rests on a linear-

ization of the Navier-Stokes equations about some known solution ¥v¢. This ‘known’ solution
d

may be ¥v® = 0, or in general, a solution previously obtained for neighboring paramecters.
The collocation method converts the linear partial differential equations into a linear algebraic
systemn of dimension N = 4K -L-M [or the coefficients of the natural variables v vd, v,

and p?. The numbers K, L, M of expansion functions in radial, azimuthal, and axial direc-
tion, respectively, govern the aceuracy of the approximation.

The second element of the procedure utilizes the modified Newton method for solving the
nonhinear problem. In the modified form, the Jacobian is not updated in every step but only
when necessary. The need to recaleulate the Jacobian s detected by a sunple algorithm that
monitors the rate of convergence. Tlus strategy is especially suited for flight simulations
where the parameters vary slowly with the flight time.
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4. Volume Integrals for the Moments

In earlier work 3289 the moments are calculated by integration of normal and tangen-
tial stresses acting at the inside wall of the cvlinder. This ‘surface approach’ derives the
moments from the pressure and the velocity gradients at the wall. These values are difficult to
obtain with good accuracy. Li & Herbert 10 have developed a new formulation for the
moments which rests on volume integrals. The nondimensional moment coefficients can be
shown to take the form

2x

n 1
2¢ D] )
M= tand :f f_£ v, ricos¢drd ¢dz , ME= MPZtand ,

no
n 1 o nr 1
;‘{yd= fffjvér")drdédz +-_--—6—fffvzr25ind)drd¢dz ,
2200 tand 7, %

where 7 is the cylinder's aspect ratio. The reference moment is puw?a® The volume integral

approach involves only the radial and azimuthal velocity components  Integration over d¢
reduces the requirements to the knoaledge of the aperiodic component v 44 of v, and the sim-
ply periodic component v, of v,. Therefore, the volume approacn can also be applied to the
analytical results given above and provides yaw and pitch moments without explicit knowledge
of the pressure.

5. Results for the Liquid Moments

While the accuratc descripticin of velocity and pressure at higher Reynolds numbers
requires many expansion functions, the smoothing of small oscillations by the volume approach
allows calculation of the moments from crude approximations. The (absolute) accuracy of
10~ 3 for engineering applications can be achieved with spectral approximations as low as
K =4 L = 3, M = 4. The accuracy has to be seen in the light of considerable uncertainty
in the moments governing the exterior aerodynamics of the projectile. We note, however, that
large aspect ratios may require additional expansion functions in axial direction while increas-
ing Reynolds number in general requires higher resolution in both radial and axial directicn.

Figure 1 shows the comparison of numerical results for the yaw and pitch moments. The
roll moment is proportional to the yaw moment. While the agreement for the yaw moment at
high Reynolds numbers is surprisingly good, the deviation in the pitch moment is hkely to ori-
ginate from insufficient resolution of the steep pressure gradients in the finite-element code ?
The eflect of discretization errors has been reduced in the results of the spectral code by use of
the volume integrals for the moments. Figure 2 compares the analytical estimates for yaw and
pitch moments with the numerical results of the spectral code. Some systematic deviations
exist. but the quantitative and qualitative features are very similar. The computational eflort
for the analytical results is negligible.

8. A Prototype Flight

We have used the flight of an M4R3 projectile as described by Vaughn et al? as a test
case for verifying the function of our version of the flight simulator, for studying the eflect of
the improved moments in comparison with earlier work, and for evaluating the different con-
cepts of incorporating the fluid moments. Some erratic behavior of the original code
FFS6DOF under extreme flight conditions will be cultivated in a future version.
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Two options have been considered for incorporating the liquid moments. The first way
utilizes a table of moments and linear interpolation. as the original code. Alternatively, the
moments are calculated by a subroutine which is called whenever the parameters vary beyond
some threshold. The latter approach avoids the error introduced by linear interpolation on a
course grid and is especially efficient for stabie flights after an initial transient period after
launch. For systematic studies ol different launch conditions for a given shell, however, the
precaletlated table seems more appropriate and the efficiency of the spectral code permits use
of finer grids. Some accuracy can also be gained by improving the interpolation.

Our computational work has been performed on a Sun 3/140 work station with floating
point accelerator. Simulation of a typical flight (32 seconds flight time) requires 12 minutes if
the liquid-moment table is precalculated. Generation of this table from the analytical solution
requires less than 10 seconds. Incorporation of the analytical estimates by subroutine contri-
butes a negligible increase 1n the simulation time. Precalculation of the 9 X8 X8 moment
table with K == 4, L. == 3, and Af = 4 requires less than 2 hours, although the sequence of
the calculations has not vet been optimized. This sequence is relevaut when using the
modificd Newton method.

In the following cases. we keep all parameters at the values specified by Vaughn et al?
except the pitch rate at launch. The initial data for the flight simulation - angle and pitch rate
st the muy7ale - are dificnlt to determine and may vary between flights. An initial pitch rate
of -1.946 rad /s was chosen by Vaughn et al to match the observed flight behavior,!! in partic-
ular the truncated flight time of approximately 26 seconds Figure 3a shows the history of the
aerobalhistic angle of attack for a solid payload (with all liquid morments set to zero) that
represents the ‘normal’ flight of a projectile of this type. The results of Vaughn et al (ref. 2,
figure 3) for a hiquid payioad are reproduced with our version of the code in Figure 3b. Figure
3¢ shows the result for the same initial conditions with the liquid moments calculated by the
spectral code. Use of the aualytical estimates leads to an almost identical picture. With the
correct moments, the flight is essentially stable, with some high-frequency motion over the

whole flight time. The liquid payload does not prevent the shell from achieving the full flight
time or distance.

When using the correct moments, we observe the flight time reported by Vaughn et al.?
and observed in the field tests 1! with initial pitch rates in excess of -3.5 rad/s as shown in
Figure 4a. Under the given transonic launch conditions, this pitch rate appears very realistic
(D'Amico. personal communication). Simulation of the same flight using the analytical esti-
mates for the moments leads to earlier onset of the instability, as shown in Figure 4b. A flight
time of 26 seconds is obtained with the lower initial pitch rate of -3.2 rad's. Since the use of
the analvtical estimates predicts less stable behavior, the estimates can be used for a first con-
servative check of the design.

7. Summary

We have developed analytical solutions for the hquid moments which allow quick and
censervative estimates on the flight instability of liquid-filled shells. For more accurate stu-
dies. the liquid moments can be generated with a spectral Navier-Stokes solver for Reynolds
numbers it the range /¢ < 10000 While the analytical results predict only the viscous flight
instubility, the Navier-Stokes solutions incarporate otk viesous fizht inctahility and instabil-

ity due to resonance with mertial waves.
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The computation of the table of liquid moments in the most critical range of Reynolds
numbers, R < 100, requires less than two hours on an engineering work station Sun 37140
FPA. The flight simulation runs at approximately 25 times real time, tvpically 12 minutes
These data clearly show that the liquid moments can be incorporated into the flight simula-
tions for practical applications.
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ABSTRACT

Artillery shells with liquid payloads may experience a severe flight instability
owing to the moments exerted by the viscous fluid motion in the cylindrical pay-
load container. Incorporation of these moments into flight simulations as a rou-
tine design tool requires a highly efficient code for solving the Navier-Stokes
equations. We describe a spectral collocation method which is based on
Chebyshev-Fourier-Chebyshev expansions in the radial, azimuthal, and axial
direction. The method exploits the symmetries of the problem. Using a volume
approach and an analytical result by Rosenblat, accurate moments are obtained
in small fractions of the time required by other codes. Solutions for the steady

motion are presented and compared with numerical and experimental data.

Introduction

Gyros and rotating fluids often exhibit unexpecied behavicr. In the past, it
has been recognized that spin-stabilized shells with liquid payloads can suffer a
dynamical instability originating from resonance with inertial waves.! Since this
phenomenon is basically inviscid and is routinely avoided by proper design, it was
surprising to observe in some cases another type of instability which is character-
ized by an increase in nutation (or yaw) angle and a simultaneous loss in spin
rate. The rapid drop in spin rate is clearly a viscous phenomenon, and labora-
tory experiments, computational results, and field tests have meaawhile shown
that this instability is caused by the nutation-induced fluid motion in a certain
range of relatively small Reynolds numbers. Although in speciai cases this insta-
bility has been overcome by trial and error, {uture design of reliable projectiles
would take profit from the opportunity to calculate the lignid moments and to
account for these moments in flight simulations. The empirical data base “ is

3,4,5,8

sparse, however, and the computational methods in use are rather

A

demanding. An evaluation and verification of the codes by *"aughn et al.¥ and
Strikwerda & Nagel ® is currently conducted at BRL.” Typical computer times
for a single case are in the range of 6-12 hours on VAN-class machines. Six-

degree-of-freedom  flight simulations 3 typically use 2:10° time steps over the
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flight time of the order of 30 seconds. Study of the interaction of the interior
fluid motion with the exterior aeroballistics consequently requires either a very
fast subroutine for calculating the liquid moments or interpolation in a multi-
dimensional table of 500 - 1000 8 precalculated values. Hence, flight simulations
for liquid-filled shells are currently a very expensive tool and are not ready for

routine applications.

In previous work,? we conducted a theoretical analysis which aimed at the
origin of the viscous despin (negative roll) moment in cylinders of large aspect
ratio. This analysis showed that the deviation from solid-body rotation is
governed by a small parameter, ¢ = (2 /w)sind, involving the nutation rate 1,
the nutation angle 6, and the spin rate w. A solution of the line.rized equations
was developed for a finite-length segment of an infinitely long cylinder, i. e. disre-
garding the end walls of the cylinder. Velocity field and the viscous components
of the moments were obtained in closed form. The velocity field consists only of
an axial component of order O (¢) which is the prominent feature of the fluid
motion in slender cylinders and produces a negative roll moment of order O (¢?)
owing to Coriolis forces. Although this roll moment is in reasonable agreement
with experimental and computational data, the original analysis accounted only
for the viscous part of the yaw and pitch moments. These latter moments con-
tain essential contributions of the pressure 4 that originate from the turning of
the flow near the end walls and were not captured by the linear analysis. The
effect of nonlinearity was studied 10 by using perturl:ation expansions in ¢ and
was found to be small except for an aperiodic streaming terin in the azimuthal

direction.

Whereas the pressure field cannot be captured by the perturbation approach,
it provided valuable insight into the structure of equations and solution. The
analytical work suggests the use of a numerical method that exploits (i) the
near-linearity of the governing equations and (ii) the smoothness of the solution
in the relevant range of Reynolds numbers. We have therefore pursued a simple
concept that is open to further refinements. We use Chebyshev-Fourier-

Chebyshev  expansions in r, ¢, z, respectively, and convert the lincarized
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equations into an algebraic system ior the expansion coefficients. Linearization
can be performed about the trivial solution or any other known solution, e. g. at
neighboring parameters. The solution of the linear algebraic system is used as
initial approximation for iterative improvement by the modified Newton method.
The feasibility of this approach has been demonstrated 1! with a crude spectral
approximation to the solution. Problems in calculating the pressure that arise
from the invalidity of the basic equations along the joint of the flat end walls to
the cyiindrical side wall have meanwhile beer cvercome.l? The present version of
the code exploits the diametral symmetry of the flow about the center of the
cylinder and allows for higher resolution at modest CPU times. This version can
also be adapted for the analysis of unsteady problems. Dramatic increase in
efficiency has recently been achieved 13 by combining an analytical result of
Rosenblat et al.® with a volume formulation for calcul.ting the liquid moments.
The moments can be obtained from only the simply periodic components of the
axial velocity and the azimuthal streaming term. A fast subroutine for flight
simulations exploits the analytical results. For more accurate studies, complete
tables of moments can be calculated in a few hours on an engineering worksta-

tion.

Governing Equations

We consider the steady motion of a fluid of density p and viscosity u in a
cylinder of radius @ and length 2¢ in an aeroballistic coordinate system z,vy, z,
where z is the axis of the cylinder, as shown in Figure 1. The inertial axis Z in
flight direction and the z-axis enclose the nutation angle 8. The cylinder rotates
with the spin rate w about z while the z, z-plane rotates with the nutation rate
1 about the Z-axis. Spin rate w and nutation rate (1 are constant. All quanti-
ties are made nondimensional using a,w, and p for scaling length, time, and
mass, respectively. The solution depends on four nondinmensional parameters:
aspect ratio n = ¢ /a, nutation angle §, frequency r = Q /w, and Reynolds
number Re = pwa"’/;c. The aspect ratio enters the solution only through the

boundary conditions at the end walls of the cylinder. The moiion is subject to
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the no-slip and no-penetration conditions at the cylinder walls. Since the velocity
field degenerates for either w = 0, Q = 0, § = 0, or u—oo to rigid-body rota-
tion of the fluid, it is appropriate to concentrate on the deviation v¢ of the velo-
city from rigid-body rotation,

v=v'  +v?, v = re, (1a,b)

where e, is the azimuthal unit vector. The boundary conditions on v? are
homogeneous. The pressure field is split according to

p=p"+p%, p" =r¥1+7, 2 + %2+ 2%% - 2rze7, (2a,b)

where 7, = —€cos¢, 74 = esing, 7, = 7cosl, € = 7sinf. The pressure p’
differs from the pressure in rigid-body rotation. The form of p" is chosen such

that the reduced pressure p¢ appears only in the z-momentum equation.

In cylindrical coordinates r, ¢, z, the equations for the velocity components

v¢ == (v,, v4, v,) and pressure p? take the form
19 1 Ovy  9v,
- - = 3
r ar("")+ r 9¢ t Jz 0 (32)
vg
D’v, - T— 2(1+T1)v¢ +21‘¢v2
6p‘ 1 v, 2 av¢
— Lipm, - 22 3b
o TR T e ) ()
v, v
D'vy + r¢ +2(1 +71,)v, - 2r, v,
18p% 1 ., vg 2 Ov
R e em—— — — c— — 3
" + =D 5+ a¢] (3¢)
) ap¢ 1
D'v, +2r, vy~ 274v, = - e 2rr, + -F?-C-D"v, (3d)
where
S 5 VYo d 8
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The primary effect of nutation is the ¢-periodic force term - 2rr, = 2¢r cos¢ in
the z-momentum equation (3d). For ¢ = 0, equations (3) have the trivial solu-

tionv? = 0, p? = 0. The system supports the following symmetries:

v, (ryo+m,-2)= v (r,d,2), vy(r,¢+m,-2) = vy(r,d,z) (4a,b)
v (r,é+m,-2)=-v,(r,é,2), pi(r,d+m,-2)=p%(r,¢,2) (4c,d)

Therefore it is sufficient to obtain a solution in the hall-cylinder, z > 0, with

appropriate symmetry conditions at z = 0.

Some Analytical Results

The st~ady flow in a relatively long cylinder (aspect ratio n > 4) at low
Reynolds number is expected to exhibit little axial variation over most of the
cylinder length. Previous work 9 has therefore relaxed the boundary conditions
at the end walls and studied the steady flow in a finite segment of an infinitely

long cylinder.

In the physical situations of interest, ¢ = (f1 /w)sind is a small parameter,
and consequently, it is reasonable to pursue a perturbation expansion in €. This
provides v, in the form

vi = 3 env)(r ) (5)
n=1

and similar expressions for p¢. The development of expressions for the expan-

sion coefficients v(*) from equations (3) leads to an alternating pattern:

(n) 6
vt =
] (v,("), vd,("), 0), n even \6)
and the components of v(") take the form
n/2 . . -
"rh\_: é(unmc’2m¢+ﬂnm6_‘-m¢) ('a)
m=1
; n/2 n -~ ) -
UCEHJ = Up, t E(Unme“rb+vnme_.-mé) (‘b)
m=1
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(wom € i(zm-a)e 4 Wy €~ (zm- l)¢) (7c)

where the tilde denotes the complex conjugate. The aperiodic term in v,(") is
suppressec by the continuity equation. The r-dependent coefficient functions in
Egs. (7) are required to satisfy homogeneous boundary conditions at r = 1 and

to be finite at the axis r = 0.
The axial velocity at order O(¢) can be found in analytical form,
wulr) =i ®)
where I, denotes the modified Bessel function, and a = (1 + i )(Re j 2)"/2. This
solution is valid for arbitrary Reynolds number but may be unstable as Re
exceeds some critical value. This component is the dominating feature of the
flow in a long cylinder. The interesting properties of the associated flo-s field are

discussed by Herbert.?

At order O (e?), comparison of the equation for v, with the imaginary part
of the equation for w,; immediately shows that the aperiodic compcaent of the

azimuthal velocity is

voo (r) = -2Im[wy(r )l (9)

The ¢-periodic components are goverred by a coupled set of inhomogeneous
differential equations with variable coefficients. With some effort, the radial velo-
city component of O (e?) can be found in closed form.!0 In view of the eflort
involved in deriving *he analytical result and the u:ltimate need to determine cer-
tain coefficients numerically, the differential equations for the third-order com-

ponents were solved by means of a spectral collocation method.

The motion is governed by the axial component w,, at order O(¢). Of the
higher order terms, only the aperiodic term v,y is substantial. In the cylinder’s
center section, these terms are in good agreement with computational results. All
the other terms are not only of order O(1) but in fact less than unity, assuring

rapid convergence of the perturbation series. The contribution of wg, to the
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despin moment is negligible. The ¢-periodic terms oscillate about zero as r
varies between 0 < r < 1. Accurate representation of single high-order terms
by radial Chebyshev series may require numerous expansion functions. For the
total velocity field, however, the error in representing these terms is of little
importance., At Reynolds numbers in the range of maximum despin moment,
reasonably accurate approximations can be obtained with only a few polvnomials
in radial direction. In the azimuthal direction, the solution is governed by terms
periodic in ¢, and by the aperiodic term vy, Fourier series with three or five
modes, therefore, provide approximations of sufficient accuracy for practical pur-
pose. The perturbation analysis clearly shows that the main features of the flow
are governed by the linear O (¢) part of equations (3) with small corrections for

nonlinearity. This property will not change for a finite-length cylinder.

Spectral Approximations

The results of the analytical work suggest that a good approximation to the
flow in a finite cylinder can be obtained by solving linearized versions of equa-
tions (3). Linearization can be performed in different ways. The first is a lineari-
zation in ¢. Besides Eqgs. (4), the resulting equations support the additional sym-

metries
vd(r,¢+7r,z)= —vd(r,q&,z), pd(r,qH-ﬂ,z) = —pd(r,¢,z) (10a,b)

These relations permit useful checks on the results of the spectral code. A second
linear system can be obtained by linearization in the components of vé. This
linearization retains coupling terms such as 2r v, in Eq. (3b) which destroy the
symmetries (10). The second system can be considered a special case with
v% = 0 of a linearization about some known solution v¢. The latter procedure
is very efficient if the solution is sought for a densely spaced sequence of parame-

ter combinations as in flight simulations.
The algebraic form of the equations is obtained by use of spectral colloca-
tion. The velocity components are expressed in the form
K L M . .
Ur=kEHZ d) Ukim Rk’f(’)Fl(O)Zn'fz(";-) (11)

=1lm =]
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with similar expressions for vy, v,, and p 4. The azimuthal functions are

cos 1—72-—1¢ , | odd

F, = l (12)
sin ?¢ , | even

The azimuthal collocation points are equidistant,
$,=2n(l-1)/L , 1 =1,2 --- L (13)
and L is odd.

In a first version of the code, radial and axial collocation points are located
at the maxima of the highest Chebyshev polynomials. The boundary conditions
are implemented by replacing three of the four differential equations in the boun-
dary points. The question then is which equation should be retained and where
the condition on the pressure, e.g. p¢ = 0, should be applied. Trial-and-error
leads to numerous cases with ill-determined matrices or zero determinant. In
other cases, a correct solution for the velocity field is obtained, but the pressure
contains a non-physical spurious term. Problems with spectral calculations of the
pressure in closed domains with corners are well-known but the reports on their
origin and methods for solution are rather unspecific. We have therefore per-
formed a detailed analysis of the flow in a square driven by an internal force
field. This simpler two-dimensional problem exhibits all characteristics - includ-
ing the spurious pressure term - of the original problem. The study reveals that
the spurious term vanishes in all collocation points except the ~orners, where it
may assume arbitrary values. The term can be suppressed by retaining in the
corners one of the momentum equations that contain the derivative of the pres-

sure in the direction of the boundary.

In a second version of the spectral code, the problems of the pressure calcu-
lation have been avoided by using a different set of collocation points. The
expansion functions in radial and axial direction depend on the index | and may
be different for the variables v,, vy, v,, and p 9. They are combinations of even

or odd Chebyshev polynomials such that
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(1) the homogeneous boundary conditions are implicitly satisfied,
(i) the symmetry conditions (4) are satisfied, and

(ii1) the limit value of the variables for r — 0 (i. e. the value on the axis) is

independent of ¢.
The collocation points are

2%k -1
n ———m

r, = si y k=12, - K 14a

k 4K (14a)
Zm . 2m -1

— —— ] s == ’2’ ot \ l‘lb
m sin —— =7, m 1 M (14b)

Since 0 < r;, no points are located on the axis. Also, r, <1, 2z,, < 7, such
that no points are located on the surface. The points in radial and axial direction
are concentrated near the boundary such that high resolution in this region is
obtained without additional coordinate stretching. Thus the bouudary layers

forming at higher Reynolds number can be resolved by slightly increasing K and
M.

The spectral collocation method converts the linear system of partial
differential equations derived from Eqgs. (3) into an algebraic system of dimension
N = 4-K L -M for the coefficients vy, , Vypm ,» Wy » and pyyy of v,, vy, v,, and
p ¢, respectively. The linear system for the expansion coefficients is solved by
Gauss elimination with paruial pivoting. The subroutine used retains all data
required to solve the same system with a new right-hand side without repeating
the costly reduction of the matrix to upper triangular form. Once the solution is
obtained, a new right-hand side is formed taking the nonlinear terms into
account and the system is iteratively solved until sufficient accuracy is achieved.
The procedure is equivalent to the modified Newton iteration (without updating

the Jacobian in every step) and converges rapidly since the nonlinear corrections

to the velocity are sma!l while the pressure appears linear in equations (3).
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Results for Velocity and Pressure
In the following, we present some results for the velocity and pressure fields
at § = 20°, 7 = 0.16667, and n == 4.368 which results in ¢ = 0.057. The
960. Calcu-

lation of a single solution with this high resolution requires abcut 2 minutes on a

results are for K = 6, L = 5, and M = 8, and consequently IV

Cray-1S. Figure 2 shows the axial and radial velocities in the planes ¢ == 45°
and ¢ = 135° at Re = 20. Only the upper half, z > 0, of the cylinder is
shown; the lower hall is governed by the symmetries (4). The scale values give
the velocity per unit length where the diameter is four units. The velocity distri-
bution at z = O agrees well with the results of the perturbation analysis and
computations with the Sandia code.3 Near the end walis, the solution is more

the

realistic and more accurate thar the Sandia icsults. The Figure alss verifice
existence of a predominantly axial flow over most of the cylinder length, except
within a region of the order of the radius near the end wall. Linear and nonlinear
velocity distributions aie hardly distinguishable. Clearly visible is the turning of
the flow near the end wall. While the flow appears steady in the coordinate sys-
tem chosen, the velocity field describes in fact an oscillatory motion of fluid ele-

ments about their near-circular orbit.

The pressure distributions for the same case are shown in Figure 3 with the
heavy lines indicating positive values. Remarkable is the formation of regions of
high and low pressure in the corner near ¢ = 45° and ¢ =~ 135°, respectively,
which produce large contributions to the moments about r-axis and y-axis.
Except in this region near the end walls, the variation of the pressure is relatively
weak. The azimuthal position of extremum pressure changes from ¢ = O for

small values of Re to ¢ = 90° as Re — oo.

The dominant components of velocity and pressure fields are azimuthally
periodic with period 27. The harmonics are small, indicating the small effect of
nonlinearity in the range of low Reynolds numuers. The only important non-
linear term is the aperiodic mean flow, This is clearly shown by Figure 4 which
gives the azimuthal velocity in the center planc z == 0. The aperiodic com-

ponent is opposite to the rigid-body rotation and exerts a negative roll moment
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through the wall-shear stress 7,,. The axial and radial mean velocity field is
given in Figure 5. This streaming term exhibits a toroidal motion near the end in
each half of the cylinder and causes a slow drift of fluid elements with respect to
circular orbits. This mean velocity produces the symmetric pattern in flow visual-

izations ! at low Reynolds numbers.

At the higher Reynolds number Re = 300, the maximum axial velocity
appears at ¢ = 90°. As shown in Figure 6, the flow in the plane ¢ = 90°
breaks up into two swirls, one in each half of the cylinder, with little flow across
the plane z = 0. Three weak swirls develop in the plane ¢ == 0 such that the
velocity field is reminiscent of a chain with five links. Notably, the break-up into
cells is restricted to an inner region of the cylinder. The motion in the pro-
nounced boundary layer visibie in the plane ¢ = 0 dces not follow the cellular
structure and may have a direction opposite to the core flow. The pressure varia-
tion is characteristically different from that at low Reynolds number. Figure 7
shows the strong variation and the formatica of an almost symmetric pattern
along the cylinder in the plane ¢ = 0, while the variation at ¢ = 90° is rather
weak. This pressure field explains the void ohservations of Miller 19 which show
a wavy distortion of the void in the plane ¢ = 0 at high Reynolds numbers. The
free surface in these observations can be interpreted as a surface of constant total
pressure. The steep and opposite pressure gradients across the cylinder axis near
z /n = 0.25 and z /n = 0.75 displace the void near these positions in opposite

directions along the diameter at ¢ =~ -15°.

Calculation of the Liquid Moments

Conservation of angular momentuam for the steady flow in a control volume

V' with surface § rotating with constant rate {1 about a fixed axis requires

M+ [ (r XF)dS = [ rx (201 X v)pdV
$ v
+ [ XX Xr)pdV + [(r XV)p(vdS) (15)
v s

where the veloeity v is measured relative to the aeroballistic frame. On the left-
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! i ,
hand side, M is the resultant torque on the control volume, r is the position vec-
tor, and F the stress acting on the cylinder. The presence and meaning of cer-
tain terms depend on the choice of the control volume. The surface integral on

the right-hand side of Eq. (15) vanishes if the surface of the control volume is

closed.

For ease of practical application, we express the moment
M= (M,, M,, M, ) in terms of cartesian components which provide yaw, pitch,
and roll moment, respectively. Analogue to Eq. (1) we decompesg the moments

into

M=M" 4+ M . SR (16)
where M” corresponds to the pure rigid-body motion while M? originates from

the deviation velocity and pressure. For the cylindrical control voiume, the

rigid-body rotation causes only a pitch component -

P e (122
My = 2men(l + tan0(2 31) ) (17)

while M = M = 0. Note that M is dimensionless; the reference moment is
5,2
paw. .

The evaluation of the components of M¢ bears some ambiguity that can be
exploited for advantages. Previous computational work 3: 45 6 employe: a con-
trol volume consisting of an “empty” closed cylinder with only tke pressure and
stresses acting on the inside surface. In this case, the right hand side of Eq. (15)
vanishes and the moments are obtained from the stresses F at the inside wali of

the control volume. Here, we use a different choice that bears great advantages

especially for computational work.

We consider a control volume consisting of a solid cylindrical surface com-
pletely enclosing the liquid. The moment calculation for this ‘ffull" control

volumne rests on the relation

M = [ r x(20 xXv¢)pdV (18)
|4 . .

Using analytical relations derived by Rosenblat et al. .8 the components of M¢
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can be shown to take the form

M2 = - I,cosf - {193)
M} = I,sinf ~ I, cosf (19b)
Mg = I sind o (19¢)
where
I,=-Iy= [ z(v,cos¢ — vysing)rdrd $dz ' - (202
v .
—é—f g7 2drd ¢ dz {20%)
|4

~ [ v,singr2drd ¢ dz (2Cc)

Y , _

Finally, we obtain the moments in the form

n2r 1
2 2 :
J [ v, rPcosédrd ¢dz (212)
tanf 7 % ° |
n2r 1 n2r1
Mi=ef [[vgr (22b)
-n0O0 -n00
M? = M} tand ‘ (22¢]

The volume integral approach thus leads to handy expressions which involve only
the radial and azimuthal velocity components. Integration over d ¢ reduces the
requirements in fact to the knowledge of the aperiodic component of vy and the
simply periodic components of v,. Therefore, the volume approach can also be
applied to the analytical results given above and provides yaw and pitch

moments without explicit knowledge of the pressure.

Results for the Liquid Moments

“Vhile velocity and pressure fields are primarily of basic fluid mechanical
interest, the practical need for the moments dictates the measure for efficiency of |

the code. The moments derived from the volume approach and the surface ;
: ¢
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approach applied to the same spectral solutions are shown in Tables 1 and 2,
respectively. The Reynolds number Re = 20 is in the range of maximum despin

moment M, .

It is obvious that the volume approach provides results of supenor ‘quality
and more rapid convergence. The required (absolute) accuracy of 103 for
engineering applications can be achieved with the low truncatlon K =4,
L = 3, M = 4. This accuracy has to be seen in the light of cons;derable uncer-
tainty in the moments governing the exterior aerodynamncs of the prOJeCtilt. As
a rule of thumb, an increase in the aspect ratio requires additional expansion
functions in axial direction while increasing Reynolds number requires higher

resolution in both radial and axial direction.

Figure 8 compares the calculated roll moments for a wide range of Reynolds
numbers with the experimental results of Miller 2 and with compqtational
results.¥ 8 The deviation of the results of the Sandia code 4 is caused by us'mg
inappropriate formulas for the moments in the nutating coordinate system.” The
agreement with the other computational data is good. Test runs with high reso-
lution suggest that the small difference from the results of Rosenblat et al.b is due
to lower resolution of the finite-element code in combination with the application
of the surface approach for the moments. The experiments were made in a range
of spin rates w between 2000 and 4600 rpm. While w = 3000 rpm has been used
in Figure 8, assumption of a lower value would improve the comparison with

respect to the maximum values.

Figure 9 shows a similar comparison for the yaw and pitch moments. The
results of the Sandia code are suppressed since they suffer from a dimensional
inconsistency.” While the agreement for the yaw moment at high Reynolds
numbers is surprisingly good, the deviation in the pitch moment is likely to ori-
ginate from insuflicient resolution of the steep pressure gradients. This gﬂ‘ect of
discretization errors has been reduced in the spectral code by using the volume

approach for calculating the moments.
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Figure 10 shows the dependence of the yaw and pitch moments per unit
length (the roll moment is proportional to M, ) on the aspect ratio of the cylinder
and compares with results of the code written by Strikwerda & Nagel > 7 and the
analytical results for n — oo. This diagram indicates that a reduction in the
overall liquid moments for a given fluid mass can be achieved by splitting the

cylindrical volume into slices of low aspect ratio.

Discussion

The codes previously in use may serve for establishing some basic results but
are too inefficient for routine applications. The finite-difference code developed at
Sandia Laboratories % 4 rests on Clorin's method of artificial compressibility and
provides the steady solution at 11 X 24 X 21 grid points in r, ¢, z-direction by
integrating over typically 10% to 810* time steps, a task that requires 6 to 48
minutes of CPU time on a Cray-1S. The result consists of over 22,000 values of

the velocities v, , v4, v, and the pressure p at the grid points.

Strikwerda & Nagel 9 bricfly describe a code using finite differences in radial
and axial direction and pseudospectral differencing in the azimuthal direction.
Nonuniform grids are introduced for increased resolution near the walls. The
difference equations are solved by an iterative method based on successive over-
relaxation. The computer time required is comparable to that of the Sandia

code. A thorough evaluaticn of the two codes is currently conducted at BRL.7

The experience witn the present version of the spectral code shows that high

performance can be achieved. The solution is obtained in semi-analytical form

with ouly N = 4 KL M (typically less than 500) numerical coeflicients. This
low data volume is especially attractive for storage and for communication with
remote supercomputers, The code is very well suited for vectorization. since
practically ali CPU time i spent on constructing and solving an algebraic system,
The code demands larger memory than other codes, because 64-bit arithmetic is
highily recommended for spectral methods in general, and the algebraic system
requires NN 4 1) words of storage. A run with 2V = 300 requires abowt 2

Mbvie of memory and can easily be carried out on enginecring works<tations
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within a few minutes, while moment calculations with N = 192 are a matter of
seconds. Since the memory requirement is acceptable even if higher resolution is
desired, the method applied here is a viable alternative in numerous other fluid
mechanical problems. The ability to obtain accurate solutions for the steady
problem directly from (large) algebraic systems bears valuable potential to answer
the question whether the steady solution is stable, and allows analysis of
unsteady motions with implicit time-stepping. The design of a reliable code for
the unsteady problem can take profit from the knowledge of the eigenvalue spec-

trum for small unsteady disturbances of the stead: flow.

While the calculation of velocity and pressure fields provides insight into the
physics of the flow, the practical interest in the moments for the quasi-steadily
changing parameters in flight simulations can be satisfied with modest amounts
of computer time. This is due to using a modified Newton method which updates

the Jacobian only when demanded by deteriorating convergence.

In general, the volume approach provides much more accurate results than
the surface approach. This improvement is due to the additional smoothing of
fluctuating data by integrating over three instead of two space directions and to
usiny fewer, less fluctuating, and more accurate input data. The ahsence of v, in
the volume formulation is welcome. This velocity component is small over most
of the cylinder length but oscillatory in the radial direction !0 with considerable
gradients near the wall. Near the end walls, v, is of the same order as v, with
steep gradients toward the end wall. Inspection of the velocity plots of Vaughn
et al.4 indicates that these gradients were difficult to resolve by the finite
difference method. The aperiodic component of v 4 is a relatively small streaming
term of smooth and almost uniform behavior along the cylinder axis. The large
azimuthally periodic components of vy near the end walls do not affect the

moment calculation.

Probably the greatest advantage of che volume formulation is the absence of
the pressure from the moment equations. This property favors the use of

pressure-free sets of basic equations, e. g. in terms of vorticity or vector potential.
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The smaller number of dependent variables can be exploited for further increas-
ing the efficiency. Even in natural variable formulations, the pressure is difficult
to obtain with high accuracy because of the invalidity of the equations in the
joints of the flat end walls to the cylindrical side wall. As shown in Figure 3, the
pressure may assume extrema near the corners and, therefore, inaccuracies in this
12gion maay strongly influence yaw and pitch moment. In this context, it is
instructive to evaluate the convergence history of the artificially time-dependent
method implemented in the Sandia code.® While the velocity rapidly reaches a
quasi-steady state, about 75% of the iterations are spent on improving the pres-
sure field. We estimate that by use of the volume approach equivalent or supe-
rior values for the moments could be obtained with less than 209 of the itera-
tions. It is worthwhile to note that the analytical results of Rosenblat et al.0
and equations (19), (20) for the moments are valid for closed containers of more

general shape and thus can be used for other interior flow problems.

Our analytical and numerical Lool; allow quick estimates and efficient calcu-
lation of accurate liquid moments. These results also suggest guide lines for the
suppression of the flight instability caused by the viscous-liquid payload. For a
given cavity and fluid, a reduction in the overall liquid moments can be achicved
in two ways. The first method is the split of the cylindrical volume into slices of
lcw aspect ratio. The second way is the longitudinal split into k2 “straws’ of
high aspect ratio kn. The change of the radius reduces the Reynolds number
which may or may not be desirable. The nondimensional moment per straw
increases due to the increasing aspect ratio. An essential reduction of the overall
morments, however, originates from the fact that the dimensional moments are
proportional to the fifth power of the radius. The dimensional factor is therefore
reduced by k7 per straw or k 3 for ail straws together, As a raw estimate, the

. -9
effective moments can be reduced by a factor £7 7,
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CAPTIONS OF TABLES

Table 1. Volume approach for the moments at n = 4.368, r = .1667, § = 20,
Re = 20.

Table 2. Surface approach for the moments at n = 4.368, 7 = .1667, § = 20,
Re = 20.

CAPTIONS OF FIGURES

-

Figure 1. Definition sketch.

Figure 2. Vector plot of the axial and radial velocities in the planes ¢ = 15°
(left, scale 0.075) and ¢ = 135° (right, scale 0.0375) at Re = 20 for z > 0.

Figure 3. Contour plot of the pressure field in the planes ¢ = 45° (left) and and
¢ = 135° (right) at Re = 20 for z 2> 0. Levels every 0.0025.

Figure 4. Vector plot of the azimuthal velocity v, in the center plane at : = 0,
Re = 20. Scale 0.003.

Figure 5. Vector plot of the axial and radial mean velocity vy for Re = 20.
Scale 0.002.

Figure 6. Vector plot of the axial and radial velocities in the planes ¢ = 0°
(left, scale 0.05) and ¢ = 90° (right. scale 0.2) at Re = 300 for = > 0.

[Migure 7. Contour plot of the pressure ficld in the planes ¢ = 0% (lcft) and
¢ = 907 (right)at Ite = 300for : 2 0. Le '~ very 0.005,

Figure 8 Roll moment M, s, Reynolds number Re  for 7 = 1.308,
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r = 0.16667, and § = 20°. Comparison with numerical and experimental data.

Figure 9. Yaw moment M, and pitch moment M, vs. Reynolds number Re for

n == 4.368, 7 = 0.16667, and § = 20°. Comparison with numerical data.

Figure 10. Yaw moment M, and pitch moment M, per unit length vs. aspect
ratio n at Re = 10, 7 = 0.16667, and § = 2°. Comparison of present numeri-
cal results with analytical results for  — oo and data obtained by Nusca with

Strikwerda’s code.

ippendix F 83




Table 1. Volume approach for the moments at n = 4.368, 1 = .1667, § = 20,

Re = 20.

K L M M, My M,

3 3 3 0.08305 0.07475 0.05023 ’
4 3 4 0.08260 0.07331 0.03006
5 3 5 0.08300 0.07332 0.03021
S 3 6 0.08317 0.07353 0.03027
6 3 5 0.08300 0.07332 0.03021
6 3 6 0.08317 0.07353 0.03027
4 ) 4 0.08280 0.07353 0.03014
5 ) 0.08322 0.07355 0.02029
6 ) 6 0.08310 0.07374 0.03035
4] S 8 0.08335 0.07385 0.03034

i
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Table 2. Surface approach for the moments at n = 4.368, r = .1667, § = 20,
Re = 20.

M, M,

=
Z
hES

M

2

3 0.07394 0.09396 0.03308
4 0.07247 008133 0.02992

& 0.07904 0.07291 0.03024
0.08178 0.07039 0.03028
0.07864 0.07354 0.03023
0.08137 0.07115  0.03027
4  0.07289 0.08354 0.02999
5 0.07804 0.07700 0.03032
6 0.08152 0.07491 0.03036

- Jr= S - T = T L T = l
[ T RS NS T R X R O X T S R
o SN T

8 0.08289 0.07415 0.03034
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Figure 1. Definition sketch.

spin nutation
axis axis
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Figure 2. Vector plot of the axial and radial velocities in the planes ¢ = 45°
(left, scale 0.075) and ¢ = 1359 (right, scale 0.0375) at Re = 20 for z > 0.
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Figure 4. Vector plot of the azimuthal velocity vy in the center plane at z = 0,

Re = 20. Scale 0.003.
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Figure 5. Vector plot of the axial and radial mean velocity vg for Pe = 20.

Scale 0.002.
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Figure 6. Vector plot of the axial and radial velocities in the planes ¢ = 0°
(left, scale 0.05) and ¢ = 90° (right, scale 0.2) at Re = 300 for z > 0.
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Figure 8. Roll moment M, vs. Reynolds number Re for 7 = 4.368,

7 = 0.166067, and § = 20°. Comparison with numerical and experimental data.
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Figure 9. Yaw moment M; and pitch moment M, vs. Reynolds number Re for

n = 4.368, 7 = 0.16667, and § = 20°. Comparison with numerical data.
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Figure 1. Yaw moment M; and pitch moment M, per unit length vs. aspect
ratio n at Re = 10, r = 0.16667, and § = 2°. Comparison of present numeri-
cal results with analytical results for n — oo and data obtained by Nusca with

Strikwerda's code.
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* Symbolic Computations with Spectral Methods

Thorwald Her bert

Depantment of Mechanical Engincering
Department of Acronautical and Astronautical Engincering
The Ohio State University
Columbus, Ohio 43210

Abstract

The use of distnbuted workstations instcad uf
mainframes has enabled us to adapt the software (o
our nceds and to implement symbolic manipulaton
into our research envirorunent. Qur applications are
pnmarily the simplification and verification of tedious
manual procedures rather ithan solving complete prob-
lems in symbolic form. We repon our expenence
using Macsyma for the denvation. coding. and docu-
mentation of complex equations, development of
improved algorithms for spectral methods, and gen-
eration of Fortran code to provide test data. Example
problems arc in the arca of viscous flow computation
and hydrodynamic stability.

1. Introduction

The exploration of fluid dynamic phcnomena
and their underlying mechanisms often requires solv-
ing the complex cquations of motion in relatively sim-
pic gcometry. The arscnal of tools for solution ranges
f[rom brutc-force cornputation to <ophisticated asymp-
totic methods cach of which has merits and shortcom-
ings.  Purc conputaiion with finite-difference o-
finite-clement methods is usually the shortest and
mast dircet route o results but leaves the investigator
with vast amounts of data for tcdious postprocessing.
Computation and pvistprocessing must be repeaied for
cvery new set of | arameters. Analytical methods, on
the other end, ofien provide gencric resulls that are
casy to undersiand and clearly reveal the role of
paramiciers. Denvation of analytical results for com-

plox pichicis, however, can be tme-consuming and

Eppendix G

pronc to crrors, and the necessary approximations
may blur the quantitative aspects. Only in rare cascs
can closcd-form solutions be found. Usually, analyti-
cal work reduces the partial differential equations to
ordinary differential equations which can be solved
numencally with relative casc.

In our stnve for quaniitative information and
insight, we have successfuliy applicd a combination
of analvtical modeling and spectral methods for the
numerical work. Spectral methods have very attrac-
dve numerical propertics ! and are closely related to
the mathematcal formulation of the problem. Incon-
sistencics in the approach do not remain localized,
e.g. to a tcw gnd points in a finite-diffcrence solution,
but affect the overall solution. The sensitivity of
spectral methods o cven small crrors - in the fermu-
lation or duc to round-off - is frustrating for the
beginner but a welcome indicator for the expericneed
user. Often, the inconsistencics arise from inappropn-
atc trcatment of singularitics, e.g. comers of the
domain, from crrors in cquations or code, or {rom
loss of significant digits that may remain undetecicd
in other caleulations. The successful ¢ffort or debug-
ging the whole approach is rcwarded with very
pleasant performance of the method.

The development and implementatior of correct
cquations can be a task of unexpected difficulty.
Repetition  of  denvations  and  coding 1S timi-
consuming but not fail-safe. The a postenoi. check
of results  with cxisting  wotk  or inwsition 1
itsufficient for verification of rescarch computations.
We bave, thoselore, imcorporated symbohic manipuli-
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ton with Macsyma into our studics on lincar and non-
lincar stability of shear flows and on viscous rotating
flows.

In our applications, Macsyma has been uscd less
for problem solving than for reproducing and verify-
ing the steps of the analysis. Like most computer
tools, Macsyma requires major leamning cfforts, while
tutonal cxamples for a specific step in a practical
application are hard to find. With increasing skills,
however, the efticiency in performing symbolic mani-
pulation dramatically incrcascs. The gain in overall
cfficicncy is high enough to consider new classes of
problems and ncw approaches that would hardly be
fcasible without sywrholic manipulation. We have
also expericnced that this tool trains the user to
clearly formulate the steps of thc analysis and to
“play’ with altcrnatives which at times provide new
insight into the structure of the problem and stimulate
more clegant formulations.

I. The Computational Environment

We have Macsyma Version 309.6 installed on a
Sun 3/180S with 575MB disk. This server is con-
nected to Ethemet and to the campus-wide Sonnet
fibcr-optic link. Therefore, we can access Macsyma
locally and remotely from other workstations or dial
in through the university’s Micom lincs from home.
The system is currently used by about ten faculty and
graduate students with little or no prior experience in
Lisp or any symbolic manipulators. Some members
of this group have worked with Unix-based worksta-
tions and superminis for the past five years and had a
short cncounter with Macsyma on a Masscomp
workstation with insufficient disk space. The
Macsyma software is not under maintenance, there-
fore, the reference manuaal 2 and users guide 3 are the
only common sources of information for sclf-study.
Although our applications vary over a wide range of
topics in fluid mechanics and heat transfer, we have
not yet fully explored the capabilities of Macsyma.

Our pnimary applications of symbolic manipula-
tion are in the following arcas:

1)  Denvation of cquations

(27 Generation of Fortran code

(3)  Companson and sclection of algorithms

(1) Documentation
We ovthine in the following sections the major steps
mvobved i soelving some sample problems and indi-

iy 1

cate arcas of application for symbolic manipulation,

2. The Flow in a Spinning and Nutating Cylinder
Calculation of the flow in:a spinning and nutat-
ing cylinder is a prototype problem arising in the
design of spin-stabilized rockets or shells with liquid
payloads. Inierest is in the moments exerted by the
intenal fluid motion and their detrimental effect on
flight stability. Since the angle bctwccn spin axis and
trajectory is small and the rate of nutation is smaller
than the spin rate, a small diziensionless parameter €
can be identified that govemns the deviation of the
fluid motion from rigid-body rotztion4 . This viscous
sccondary flow in the cylinder and the é:oupling:wi(h
inviscid inertial waves arc apalyzed using a perturba-
tion method for long cylinders, an expansion in spa-
tial eigenfunctions, and a Navier-Stokes solver based
on a spectral collocation method. All these methods
rest on the continuity equations and momentum equa-
tions for the reduced pressure and the secondary velo-
citics (deviation from rigid-body motion). The equa-

tions are written in cylindrical coordinates with

respect to a rotating coordinate system:4 In this sj}s;
tem, the secondary motion appears steady and forced
by an azimuthally periodic force of oider O ().

This set of equations, the characteristics of the
variables (scalar, real), dependencics; and frequenty
occuring operators can be defined once and saved in a
file. The branching into different approaches suggests
a hierarchical file structure as in Unix. We found it
advantageous - especially in the leaming phase - to
develop segments of this hierarchy interactively and
to save the successful commands in relatively small
files which terminate with cleanup commands (kilf).
This mode is very convenicntly executed on multi-
window systcms with easy scroll and screen-to-screcn
copy. The proper scquence of files to be Ioadcd can
be specified in a master file.

2.1 Perturbation Analysis for Long Cylinders

For a sufficiently long cylinder, the soluupn can
be assumed independent of the axial dircction‘and the
boundary conditions on the e¢nd walls can be
neglected.  The cssential steps of the . perturbation

cxpansion arc: specify axial gradients to be zcro (gra- -

def), expand velocities and pressure in a truncated
power scrics in € (sum), expand azimuthally in a com-
plex Fouricr serics, and substitute the double sum into
the basic cquations.  Extraction of terms in the nth
power of ¢ and like exponentials ¢“*® in the azimu-
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thal variable ¢ with ratcoeffrev(...}) provides ordinary
differential cquations for the coefficient functions
which depend on the radial variable 7. This pre-
cedure shows an intcresting pattern, since numerous
cequations arc identically satsficd: odd n are associ-
ated with odd m and contribute only to the axial velo-
city component, while even n are associated with
even m and contnbute to redial and azimithal veloci-
tics and the pressure.  Wilii homogencous boundary
conditions on the cylinder wall and proper conditions
on the axis, the lowest-order axial velocity component
can be obtained in closed form and expressed in tems
of the modified Bessel function /(or), where
of = iRe and Re is the Reynolds number. The mean
velocity (m even) .s of order O(ez) and consists only
of an azimuthal component. This component is asso-
ciated widh a viscous roll moment on the cylinder.

We have manually developed a closed-form
solution in terms of Besscl functions for the penodic
sceond-order terms  We have not yet reproduced
this result with Macsyma.  The effort to obtain
closed-form solutions increases dramatically with the
order.  Therefore, we solve for the terms of order
n 22 by use of a spectral collocation method. The
expansion functions arc lincar combinations of even
and odd Chebyshev  polynomials in the interval
0 <r <1 that satisiy thc boundary conditions and
conditions at r = 0. The casec n =2 scrves for com-
parison with the closed-form solutions.

Given the (lincar) differential equation Lf = g,
where f =f(x) and g =g(x) and the expansion
functions hy(x), spectral collocation directly leads to a
lincar algebraic system Ma=g.! The vector g con-
sists of the values g(x,) at the collocation points X
In our work, the vector a consists of the expansion
cocflicicnis a, of f with respect o hy(x), and
M=(m,) is thc matrx representation of the
differential eperator applied to h, (columns) at X,
frows). The kcy to solving the given differential
cquation s to accurately dehine the clements m, of
the matrix M and the right-hand side g The alge-
braic system can then be solved with standard pro-
ccdures.

With Macsyma, it 1s straightforward 1o repiace
the right hand side g by a vector form gn) and to do
the samce for the r dependent coefficicnis of the
dificrential equation. What remains then, is 1o replace
diffif orny by Hipk,nl on 20, where 5 oindicates
the cellocanon point, & the expansion function, and n

hpperdiz G

the order of differcntiation. The result can be con-
verted to Fortran and inscrted into a genenic Fortran
framework. The Macsyma output usually requires
some cditing for inconsistencics (e.g. sqri(2)) with our
compiler. After this cditing and modifications to
account for the specific parameters of the problem,
printout, etc., the spectral code is ready to run, pro-
vided the array H(j,k,n) contains the requircd data.
These data are gencrated by onc of a number of
problem-independent subroutines in our individual
library. Different versions account for different sym-
metries, intervals, varnable transformations, and the
specific choice of collocation points (see section 4).

2.2 Volume Integration of the Moments

Given the deviation velocitics and reduced pres-
sure, the calculation of the moments cxcrted by the
fluid on the cylinder is a formidable task. In previous
finite-diffcrence codes, these moments are obtained by
intcgrating normal and tangential stress components
over the surface of the cylinder. Unfonunately, the
input data - surface pressure and velocity gradients -
are not very accuratc. In addition, this procedure
obtains the moments as the small difference of large
numbers (pressure and viscous contnbution) and con-
sequendy the results suffer from insufficient resolu-
tion.

With somc analytical effort, the moments can be
obtaincd by intcgrating over the volume of the
cylinder. The final equations given by Herbert & Li ©
show that ncither the pressure nor denvatives of the
velocity are required; only the mcan azimuthal velo-
city and the first Fourier mode (~¢‘®) of the axial
veloc’ty need to be known. The cxpressions do riot
involve small differences of comparable terms.

The onginal dc.ivations of the moment cqua-
tions by Rihua Li consumed weeks of intcnse work.,
The smaller part of this time, obviously, scrved to
find the proper steps of the analysis. The remainder
was uscd to denve and venfy the detailed cquations
and to inscnt and correctly integrate the spectral
representation of the velocity components.  Since
Chebyshev polynomials arc closely related to powers
of the vanablc x as well as to trigonometric functions
of the transformed variable 0 = cos™'x, the spectral
moment cquations give the result in an casy-to-
intcrpret semi-analytical fonm.
repeated Li's denvation with Macsyma in a few
hours.

Mcinwhile, we have

100




2.3 Expansion in Spatia) Eipenfunctions

For cylinders with smaller aspect ratios, above
perurbation solutior deteriorates.  The problem s
then to solve the basic cquations for a finite cylinder.
While previous finite-difference codes  suffer from
insufficicnt resolution and lack of convergence at
highcr Reynolds numbers, the problem appears 1o be
well suited for a spectral approach. Two altcmatives
to consider are: (1) spectral expansions in generic
functions, with azimuthal Fouricr sercs, radwa! and
axial scrics in combinations of Chcbvshev polynomi-
als (cven or odd to satisfy the conditions at r = 0 and
to cxploit the symmetrics of the problem), or (2)
cxpansion in aznmuthal Fourer seres and  spatial
cigenfunctions that can be obtained from the lincar-
izcd problem.

Expansions in spatial cigenfuncticns to solve the
lincar problem were pursued by Hall et al? who
determined the cigenfunctions in a scparate siep by
numcrical integration  of  homogencous  ordinary
differential equations in the axial variable z. The
three-dimensional boundary value problern reduces in
this way (o the onc-dimensional problem of satisfying
the boundary conditions ar the end wall with a ¢ollo-
cation or lIcast squarc mcthod.

L1 & Herbert 8 have developed a single pantial
diffcrential equation for the spatial cigenfunctions that
can be solved by scparation of variables, The gencral
solution consists of the product of cosincs of complex
arguments in the axial and modified Bessel functions
of complex arguments in the radial dircction. Eigen-
solutions can be found by dctermining the constant of
scparalion from a characteristic system of cquations.
The remaining one-dimensional problem here is to
satisty thiee rather complicaed boundary conditions
at the cylinder wall.  With the numerical expansion
coclhicients determined by collocation or least square
mcthad,  the momens of the lincar approach  are
obtained in semi-analviical form.

The notes and deavations for this approach fill a
file ol The results are still
crror was detected in the
final results for the moments,  Rederivation of the
complete formulation with Macsyma by a relalively
unexpericnced student required two days and showed
one sien cenor an the manual derivation that led o

well over 2000 pages,
unj:ubiished since a sma

cancellation, not summation of (wo small terms. At
the cnd of the sccond Jav, we obtained the correct
rosult fram the Portran oonde.
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The expansion in spatial cigenfunctions is very
interesting from a fluid dynamic point of view since it
clearly reveals incrtial-wave type functions and the
formation of boundary layers at higher Reynolds
numbers. However, the cvaluations of convergence
and computational demand lead to the conclusion that
spatial cigenfunction cxpansions may not be the
optimum approach. Rcliable calculation of the roots
of the characteristic cquations in the large range of
Reynolds numbers (10'l < Re <108, say) is numeri-
cally very demanding and can only be achieved after
drtailed studics on ihe asymptotic form of the cigen-
value spectrim.  Symbolic manipulation of the equa-
tions and thc ultimate solve command simplified this
task cnomously. Cumently, we obtain reliable and
accurate results up to Reynolds numbers of the order
10°. While we have mastered the calculation of the
cigenvalucs up to Re = 5-10% more analytical refor-
mulation is required 10 avoid floating point overflows
and loss of significant digits in the numerical solution
for thc expansion cocfficicnts. Based on existing
batch files, this work will be done in an interactive
mode with Macsyma altemating with sketching new
attempts on the note pad.

2.4 Spectral Navier-Stokes Solution

From previous work we have leamned that the
solution of the cylinder problem is cssentially
govemned by lincanzed cquations plus nonlincar
corrections that increase with €. Lincarization can be
performed in different ways. The finst is a lineanza-
tion in £. A sccond lincar system can be obtained by
linearization of the vclocity components and pressurc
about some known solution which may be identically
zcro. The latter procedure is very cfficient if the solu-
tion is sought for a denscly spaced scquence of
paramcter combinations as in flight simulations.

The algebraic form of the cquations is obtained
by use of spectral collocation with generic functions.®
Instead of a single array # (j.k.n) abcve, vanous
presct arrays M, H,4 H, arc required, where § indi-
cates the dependent variables. The spectre! form of
the basic cquations is not difficult 10 code manually
but - with the Macsyma input availablc - can be
quickly gencrated per computer. The generic frame-
work reflects the increased number of dimensions and
vanables as well as the nonlincar naturc of the prot-
lem: the dimension of the matnix increases to the pro-
duct of the numbers of expansion functions in r, ¢, z

times four (vanables). The lincar alpcbraic system
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takes the form MYaM = g that is obtained by applying
Newton's micthod (U =v+l) or the modified
Newton's method (p > v+1). In the latter case, the
Jacobian MY is only updated when indicated by
deteriorating rate of convergence. The solution pro-
cedure starts with v =0, L =1 from zero or from a
prcviously obtained solution at ncighboring paramc-
icrs.  Once the iterative solution converges, the
moments are calculated from volume integrals.

in the Reynolds number range covered by previ-
ous finitc-difterence codes, accurate moments can be
obtaincd with 4 x 3x 4 cxpansion functions in
r. ¢, z, respectively, and 2 matrix dimension of 192,
The measured computer times are smaller than 107
times those required by finite-diffcrence codes. These
three-orders-of-magnitude savings in computing time
and cost pcrmit routinc application of the spectral
¢rde in flight simulations performed for design pur-
posc which was not possible with previous codes. The
cost per solution increases with the Reynolds number
but is still less than with cigenfunction expansicns at
Re = 10" and is for the nonlincar result, not the lincar
approximation. For higher Recynolds numbers,
mcthods based on the boundary-layer approximation
arc ctfcctive although their accuracy at Reynolds
numbers of the order 10° remains to be verified.

The overall design of the spectral code and the
volume approach to the calculation of moments was
madc possible only by good understanding and
intense exploitation of the analytical properics of the
problem. Unavailability of any symbolic manipulator
in our carlicr computer environment had forced us to
do most of the work manually. In retrospect, sym.
bolic manipulation had ecasily saved onc yecar of
qualificd labor on this probler1 alone. We¢ have pur-
chascd the license for Macsyma for $1,800 (for cdu-
cational institstions), 10 be shared by various users - a
worthwhile investment,

3. Hydrodynanic Stability

The siwation in our studies of hydrodynamic
instability and transition in shear flows is quite similar
o the abeve. Decomposition of the velocity and
pressure  fields  into various components, Fouricr
decomposition i two spatial dircctions, and cxtraction
of lincanzed or nonlincar cquations for single com-
ponents are tedious tasks. Even more tedious are the
common steps of climinating the pressure by taking
the curl of the momentum cquations and climinating
onc of the velooity components by use of continuity.
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These steps require manipulations of derivatives of
the basic equations and subsequent substitutions. We
aave made much progress in performing these steps
with Macsyma although elegant commands for some
detailed steps have not yet been found. In our pro-
cedures, we prevent Macsyma from  evaluating
diffcreniations to maintain differcntial equations in
the onginal variables (not their derivatives). Since
Macsyma distinguishes, e.g. between (u, ), and (uy), .
a formal substitution for u, and subsequent cvaluation
ev(% . diff) does not always provide the result we
desire.  Qur skills, thougn, are still open 10 improve-
ment.

A particular example for the fruitful application
of symbolic manipulation is our study of nonlincar
secondary instability in boundary layers.%- 19 n spitc
of thorough checks of cquations and Fortran code, we
ended up with two independent codes that provided
different results. In view of some ambiguity in cer-
tain subslitutions and arrangcment of tcims, we were
unable 0 find the source of the discrepancy and to
decide for either onc of the codes to be correct.
While we were caught for months in this dilemma
and faced a third and fourth pass through the analysis,
Macsyma became available for MC68000-based
workstations. Although we had to install and run the
softwaic on a workstations with insufficient disk space
and had to lcam the use of Macsyma from the very
basics, the correct code was obtaincd within a few
weeks. The printout of the cquations and detailed
output from this code cnabled correction of the manu-
ally derived equations and of thc faster hand-written
code shortly after.

Weaponed with the ncw capabilities, we
currcntly implement non-parallel  effccts and  the
streamwise vanations of the disturbances into the
analysis. Besides the creation of the matrices and
vectors for the algebraic systems, syrabolic manipula-
tion is usced to analyze asympiotic propertics of the
solutions, c.g. at large distance from the wall. OQut-
side the boundary laycr, the cocflicicnts of the
diffcrential cquations arc constant.  The asymplotic
solution can, therefore, be obtained in closed form.
Recently, we discovered that the cxisung theonces of
stability in non-parallel flows use an incorrect form o
these asymptotic solutions.

The complexity of the cquations and diflficultics
of the code verification markedly increase when we
change from the previous incompressible problems 1o
similar ptoblems in supersonic and hypersonic ows.
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The main reasons are the increased number of vari-
ables and functional relations, e.g. between viscosity
and temperature (or species distribution).  In joint
work with Dr. G. Erlebacher at NASA Langley, we
performed the first critical step: to develop and verify
a spectral code for compressible stability studies. The
verfication used Macsyma to generate the matrix ele-
ments of the high-dimensional lincar eigenvalue prob-
lem. With litde cffort, the effect of approximalions
crupioyed in other codes could be studied and a small
ctror in ancther available code discovered.

Ovcr ume, the use of symbolic manipulation
produces @ vancty of relatively small input files that
arc wonhwhile saving and dcveloping into an archive
of procedures comparable to a subroutine library.
Improved versions can be created as skills develop.
New projects can take profit of this archive of reoc-
curing scts of equations or formal manipulations mak-
g the application of Macsyma increasingly efficient.

4. Algorithins for Spectral Methods

While the forcgoing applications were primanly
concerned with the dernivation of error-free cquations
and codes, there is a wealth of algonthms that arc
mathcmatically correct but useless for numerical
apnlications - often because of the finite word length
for handling numbers in a computer. The finite word
length and round-off errors arc of particular concern
11 context with spectral methods and their sensitivity
to small errors. It is incvitable to sccure accurate
numerical results, especially for those subroutines that
produce the problem-independent spectral data such as
the matnices H (J .k ,n) mentioned above.

An carly example of a numerical pitfall with
speciral methods is associated with the first spectral
sotution of the Orr-Sommerfcld cquation of the hydro-
dynamic stability thcory by Orszag.!! This work
cmployed the tau mcthod instead of collocation but
rests on matrices similar to H(j .k .n) o express the
denvatives of the expansion functions in terms of
cxpansion functions.  For the fourth denvative, the
matnx clements take the form

AT = ) = 3% + 3% 377 - )

For j =k, thc result of cvaluating this expression
with 32-bit {loating point arthmciic  delenorates
rapidly for ;. & > 25, as shown by Orszag's results
for the aigenvalues of the Orr-Sommerfeld cquation.
The obvious teason is the small difference between
the large numbers &% and % The effect of round-off
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can be casily studied with Macsyma by obtaining first
the accurate result and then the result of bigaoat
opecations  with  different  scttings of fpprec, the
desired precision. It is also casy to see that a numeri-
cally more advantagcous form of the matrix elements
can be obtained by substituting k =1 + j:

U+ HUAE = 8y + jI361% - 32)
+ (12jU2 + 831)(1% - 4) + 1612 + 32j1)

This substitution is a trivial symbolic step but the
effect of round-off errors is practically removed.

Every step in the subroutines for initializing the
matriccs £ (j,k,n) has been carefully selected to
minimize round-off errors. Calculations of data for the
scquence of trigonometric functions or Chebyshev
polynomials arc often recursive and bear the danger
of dramalic error propagation. Error analyses in the
literature and comparison of results for different
floating-point precision were earlier used as criteria.
More recently, these studies have been repeated with
Macsyma, although no improvements were achieved.
Accuracy of the basic subroutines has been verified
for up to 180 expansion functions. For larger
numbers of functions (which are irrelevant for our
purpose), round-off errors slowly creep in.

5. Documentation

Availability of workslations and virtually unlim-
ited access to a computer (and laser printer) at no
nominal charge has modified our mode of operation
over the past few years. Besides program devclop-
ment and computation, the computer also scrves for
documentation and as a ‘‘note book.”” While docu-
mentation earlicr involved piles of scratch notes, pro-
gram listings, and results before the first draft of a
publication, we usually begin this draft before the first
line of coding. The use of Unix has led us to still
adhcre to troff as the common typeseiting systcm
(although TeX is availablc). With the typese:: truc
command, intermediate steps and  results of our
Macsyma scripts can be dircctly converted 1o egn |
troff form for inclusion in the descnptive text. For
lengthy cxpressions, the Macsyma output frequently
requires some manual modification. The short nota-
tion of the scripts also suggests global redefinition of
the quantitics for troff output. The printout of the
Macsyma batch script provides all the details of the

derivaiicns The draft can be cxtended as the work
progresses and provides an unambiguous descenption
of the cquations used i the computer codes. Conver-




sion to a publication requires major cditing, more text,
fewer equations, inclusion of the results, etc. The
proccdure  prevents, however, the discrepancics
between what has been done and what has been pub-
lished.  Symbolic manipulation serves here to save
tedious typing of equations and to reduce snurces of
CITOT,

6. Conclusions

Symbolic manipulation does not solve our
rescarch problems. We still have to develop the ideas
and work out the dctails of the analysis. However,
the description of the various steps can be sketchy,
and the accurate formulation for documentation and
computer code can be obtained by symbolic manipu-
lation. Macsyma can also be used as a powerful and
cfiicient *‘calculator’ 1o test and improve numerical
algoriinms.

We consider symbolic manipulation as a tool
similar to programming languages and computers: ini-
tially, their use Lelped to reduce the amount of human
lubor and human crrors. Soon, these tools enabled
solutions 10 problems that were not feasible without
their use. Leaming and mastering these tools require
some  cffort, but their usc educates us 10 more
ngorous!y formulate ideas and reiicves us from time-
consuming tasks. Today, symbolic nanipulation
should be an integral pait of the engincer’s rescarch
chvironment.
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ABSTRACT

The mioments exerted by the fluid motion in liquid payloads can jeopardize the stable flight of spin-
stabilized projectiles. These moments can be computed with various Navier-Stokes codes for
sufficiendy small Reynolds numbers. For the linearized problem, Hall, Sedney, and Gerber (1987)
have proposed an expansion in radial eigenfunctions that could exiend the range of Reynolds
numbers. The need to determine eigenvalues and eigenfunctions numerically and the slow conver-
gence o« the expansion series, however, make this approach less efficient than solving the Navier-
Stokes equations with spectral methods. We have derived a new formulation of the linear problem
that permits closed-form solutions for radial or axial eigenfunctions and calculation of the eigenvalues
from a closed-form characteristic equation. The formulation is also suited for solution by spectral
methods at a fraction of the computational expense of other codes.

1, Introduction

Spin-stabilized projectiles with liquid payloads may expericnce severe flight wmistabilities. Two
types of liquid-induced instability arc currendy known. Both types are excited by the ¢coung motion
of the projectile about the trajectory.! The first type is caused by rescnance with incniial waves at
critical frequencies t (ratios of coning rate Q to spin rate ®). This resonance is most prcnounced for
low-viscosity liquid fills, i.e. at high Reynolds numbers, and dcpends sensitively on the cylinder's
aspect raio M. Theorctical analysis of this instability usually involves the boundary-layer appmxima-
tion and therefore provides design critena for sufficiendy large Reynolds numbers, Re > 1000, say.
Analysis bascd on the Navicr-Stokes cquations ¢ shows, however, that resonance with inertial waves
may scverely influence the liquid moments at Reynolds numbers as low as Re = 100. (We define the
Reynolds number by Re = pwa*/y, where p is the density, a the radius of the cylindrical cavity, and
1 the viscosity.) The sccond type of instability is of viscous nature and is most pronounced at low
and medium Reynolds numbers for a wide range of aspect ratios and frequencics. This instability is
characterized by a negative roll moment that opposcs the spinning motion of the projcctile.
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Theoretical analysis of the moments must be based on the Navier-Stokes equations or on a linearized
form of these equations if the nutation angles 6 are sufficiently small.

Since both tvpes of instability appear simultaneously for a wide range of Reynolds numbers, it
would be highly desirable to develop a unified approacn that bears potential for computing the
momengs in a wide range. Moreover, the efficiency of the moment computation is crucial since flight
simulatons require either large tables for interpolation or frequent evaluation of the moments for
varying pammclcrs.3

The analysis of liquid moments for engineering design is based throughout on the quasi-steady
motion in the acroballistic system. Direct solution of the three-dimensional nonlinear Navier-Stokes
problem typically requires S - 200 seconds per solution on today’s workstations (Sun 3/140 FPA)
when using spectral methods.? The time increases with the Reynolds number and the formation of
boundary layers. For practical purpose, the application ranges up to Re = 1000. For larger Reynolds
numbers, Re > 1000, the analysis rests on linearized equations and use of the boundary-layer approx-
imation At Re = 0(10°), this approximation causes errors of about 10% 3 which decrease with
increasing Re. Estimates of the mements for large aspect ratios i can be obtained at negligible cost
from a perturbation expansions in € = tsin6.% Although this expansion is valid for all Reynolds
numbers, it disregards the finite length of the cylinder and hence excludes the effect of resonances
with inertial waves that depend on this length.

An altemauve approach o solving the 'Hwest-order cquations of such an expansion has been
suggested by Hall, Sedney, and Gerscr (HSG).? This approach expands velocity components and
pressure in 2 scues of products of trigonometric functions in axial direction and redial *‘eigenfunc-
tons’’ that sausfy homogencous boundary conditions at the side wall. The coefficients of the series
can be found from the boundary cenditions at the end wall by collocation or least squares methods.
Since only the lineanzed equations are solved, the HSG method provides yaw and roll moments but
the pitch moment requires solving for nonlinear terms. While the nonlinear extension may be a
matter of time, the shortcoming of the method is in the numerical determination of eigenvalues and
cigenfunctions. Practical application is restricted to the range up to Re = 1000 with CPU tmes of 10
- 1800 scconds per solution (VAX 8600).

For given parameters, the eigenvalues for the HSG expansion are obtained by iterative solution
of a sixth-order compicx system of ordinary differential equations and are difficult to find. Good ini-
tial guesses arc required for the iteration to converge. This problem is currently overcome by precal-
culating voluminous tables for interpolation of the initial estimates. The gencration of these tables
requires approximately 40 hours CPU time on a Cray (Murphy 1988, personal communication).

In the following, we discuss an aliemative to the HSG method. We first outdine what quannucs
arc needed for the calcuiation of the moments. We derive a single sixth-order partial differential
cquation for the axial velocily component. This equation can be solved by using axial or radial
cigenfunctions. The eigenfunclions are given in closcd form and the cigenvalues are deicrmined by
numerically selving a closcd-form charactenstic equation.  The partial diffcrential equation in two
varablos absa piovides 3 new basis for efficient solution by spectral micthiveds.

2. Culculation of the Moments

For the moments, we use cariesian coardinates x, y, z, where z is the spin (or cylinder) axis
whiie ¢ is normal to : and coplanar with spin axis and nutation axis. Vclocity and pressure ficlds,
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however, are more conveniently expressed in cylindrical coordinates r, ¢, z. The nondimensional
moments can be obtained from the following relations:®

n 2x 1
M, —2-0-)-0039 ] gévx ricospdr dodz , (1)
-n
M, = M, an8 , @
Q n i n &l
My =2cosh | “'v, risingdr dodz + -g-sine f “v,rzdr dodz . 3)
-n -n

The reference moment is pw?a’® and v = (v,, v,. v,) is the velocity vector of the deviation from
rigid-body motion. We represent the velocity field by the Fourier series

VP 0 z)= 3 va(r.2) e, vy = (U, Vo W) @
noe -

After performing the integrations over ¢ in egs. (1) and (3). it is obvious that the calculation of the
moments requires only the two Fourier components w,(r, z) and vo(r,z). From perturbation
expansion in € = tsinB $ it becomes immediately clear that w is of order O (€) and hence the dom-
inating component directly related to the periodic forcing with T, = - £cos¢. In contrast, vq is an
aperiodic (streaming) component and hence of order O(sz). Since € is small in cases of practical
interest, we concentrate in the following on determining w, from the linearized equations, leaving the
nonlinear corrections for future investigation,

3. Linearized Equations for the Axial Velocity

We write the Navier-Stokes equations for the deviation v, p from rigid- body motion in the
nutating (aeroballistic) coordinate system.? Linearization in € = (/) sin® provides

V.v=0, )
%v+21xv+Vp —-I—;—;V2v=—2rt,e,‘ ' (6)
where
a .13 . 13 &
R @)
ort  ror 239 a3zt
and
T=(5,. % 1+1,), 1, =~ Qsinecos\p LT = -Qsine sing , 1, = Ecoso : (8)
@ ® 0]

We take the curl of the momentum equations (6) to obtain the vorticity cquations that arc free of the
pressure. We further take the curl of the vorticity equations and apply 8/d¢ — (1/Re)V? 1o the result-
ing cquations. Since T, and T, arc functions of ¢ only, we obtain the following homogeneous system
of parual differential equations for v:

—-I-;V6v—-2——a—V4v+—£-Vv+4(l+t)zav=O. %)
Re* Re J¢ d9* 0z

We introduce the Fourier series (4) for v and the scaled variables
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wy=€w, F=qr, t=q, ¢q=(1+i)NRei2, (10)

and obtain for w

Vow - 2V% + V4 - 4(1+r)2§2‘—"_0 (11

where
o 19 1 & 12
FYERMI SR (12

Equation (11) is a single sixth-order partial differential equation for w(#, ). The derivation of the
boundary conditions at the end walls and side wall is tedious and will be given elsewhere. The boun-
dary conditions at the end walls Z = + ¢n are

aw &

w=0, =0, Fw

“5’ + (V- 1)8—- =0, (13)
with
(e t—— - — . (14)

The boundary conditions at the side wall 7 = g take the form

w =0 (153)
3 Wiy + 22928, A
oF F 9zt oFas’
_ 292, P w 1oz, o 20*+%) (15b)
oF 8?852 R iq
3 &2 iw 1 dw
21+ 12 - L0k — 2 P L
( )[ oF ar orazt  #? aF]
S 1oz, 4 Llos, 22w 20¥TH) (15¢)
2 P P oozt iq

Three of the boundary conditions (13), (15) contain only derivatives with respect to z while the
other three involve derivatives in both variables. In this torm, the end-wall conditions are homogene-
ous while the axial velocity is forced by the side-wall conditions (15b, ¢). The problem can also be
reformulated with inhomogeneous end-wall conditions and homogeneous conditions at the side wall
by subtracting from w a multiple of the closed-form solution

waiy=L -8 (16)
9 )
for the axial flow in an infinite cylinder? 7, denotes the modified Bessel function. The solution of
the problem can be found by appropriaie numerical methods or by expansions in spatial eigenfunc-
tons. We note that the laiter method belongs to the class of spectral mcthods and is distinguished
from more generic methods by the special definition of the expansion functions.
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4. A Note on Spectral Solution with Chebyshev Series

Previous work 2 has shown that spectral methods with Chebyshev-Fourier-Chebyshev series in
r. ¢, z, respectively, are efficient in solving the Navier-Stokes equations in the four natural variables
Voo Ve vy, and p.o It K, L, M denote the degrees of freedom in the three space directions, then the
spectral solurion requires determination of Nys =4 x K x L x M coefficicnts for all nawral van-
ables. The no-slip boundury conditions are independent of the variables and can be implicidy satisfied
by using linear combinations of Chebyshev polynomials for the velocities.

Solving the govemning equations for the single function w with Chebyshev-Chebyshev seres in

F oand I, respectively, requires the determinaton of only N, = (K +2) x (M + 1} expansion
cocfficients. The small increases in the degrees of freedom in 7 and Z account for the three boun-
dary conditions that involve derivatives with respect to both vanables; the other three conditions can
be implicily satisfied. The projected CPU time for a single solution is reduced by the considerable
factor (N, /Nys)® = 0.016/L3. These savings should permit spectral solutions for Reynolds numbers
well in excess of Re = 10*.

The spectral code was suggested by M. Selmi and is currently in development. The high order
of dilfercnuauon demands extreme care tor preventing round-off errors in the implementation.

5. Spatia! Eigenfunctions

For brevity, we consider here only the case of axial eigenfunctions that sausfy the homogencous
boundary condiuons (13). We solve the governing equation (12) by separation of vanables:

w(f.2)=F@F)G@3), (17)
where
VIF =BF , F(F)=1,("B7). (18)
and B is a constant of scparation. Equation (17) with

3
GE)= Y c cosa;: (19)

1=1]
is a solution of equation (12) if the three a; are roots of
a® -~ (3B - 2a'+[3B*—4B + 1 -4(1 + 1) )a’ - (B> -2B%2+B)=0. (20

The cther three roots arc redundant by reasons of symmetry in Z. The boundary conditions at the end
walls are satisfied if

- 2
(a{—a:.z)(ZB -1- af—af)altan(alqﬂ)agmn(azqn)
b 9 ~ e
i (as-ayj)2B -1 a_z -a,z)ul:m*.(a_an)aﬂun(a;‘qn) (zn)
+(ai—ai)(2R - ) - ,132—-(1iz)(131:1n(n3qr])a1mn(ﬁalqn) =0.

and twao of the coefficients ¢, are properly chosen, Equations (20) and (21) represent a transcenden-
tal nonlinear sysiem that provides an infinite sct of solutions for the four unknown quan:itics 8 and
J, dand associated crgentuncions (17).

Findimy the eigenvalue quadrupels (8. ay. a;, a3) 1s a nontnvial task, and dcetails will be
desenbed clsewhere. The relatively simple form of ers. 120) and (21), however, permits application
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of analytical tools unavailable in the numerical approach.” Eouation (20) has four isolated roots with
real 8. Only the double root B8 =1 (with a, = 0) satisfies eq. (2]) and provides an isolated eigen-
function. For sufficienty large Reynolds numbers (and ¢). it can be shown that one of the g;’s, a,
say, must be located near the diagonal arg (a,) = — n'4. We observe that ¢q. (20) can be interpreted
as determining cither the g; for given 8 or three solutions B; , j =1,2,3 for any given a. Varying
a along the diagona! - w4 provides three branches as the Incus of the B;, two of them, B, and 8,
originatng at 8 = 1, the third, B;, at B =0, as shown in figure 1. A small correction to these
branches and the position of the eigenvalues along the branches is provided by eq. (21). The laiger
e Reytiolds number, the denscr is the spacing ot the eigenvalues.

Given a triplet 5;, we obtain for each B; the associated values of a;; , i = 1,2,3, where the
a;, are located in a small neighborhood near the diagonal — 4. Figure 2 shows the curves gen-
erated by the first 50 eigenvalues for Re =20, n =4.368, 1= 0.16667, and 6 = Z0. Full, dashed,
and dotted lines indicate the three families associated with the B; in figure 1. At higher Reynolds
numbers, the lines with arg(a;) =— w4 are hardly distinguishable. Since each quadrupel
(8,. a,). g,2, a,3) defines one cigenfunction, these functions are ordered into triplets with approxi-
mately the same a,;. The tiplets can be ordered by increasing ta 1. We finally obiain the ordered
cigenvalue quadrupels (8,,: da1, dpj20 @pj3)i = 1,2, - - o0, with la, ) < Tagannl

The complex cigenfuncuons are osciilatory, and the number of zeroes of rcal and imaginary pan
increases with n.  Analysis of this oscillatory behavior suggests accounting for the isolated eigen-
function with B =1. At larger Reynolds numbers, the eigenfunctions cxhibit a pronounced
boundary-layer character near z = 1.

6. Numerical Solution for the Axial Velocity

With given eigenvalues and eigenfunctions, the axiai velocity can be represented in the form

N 3
wF.i)y= Y T A, F,(F)G,,(3). (22)
aalj=1

where the yet unknown constants are determined by the boundary conditions (15) at the side wall,
F = ¢g. As Hall, Scdney, and Gerber,” we find these constants numerically by using a collocation
method or the method of least squares and calculate the associated yaw moment M,. The conver-
gence of the expansion seres in terms of M, is shown in figure 3. A rclatively large number of
cigenfunctions is necessary to obtain the accurate result within an error of a few percent. The accu-
racy improvces rapidly and systematically as more cigenfunctions are taken into account.

The method is currently operational up to Re = 2000. Wec have calculated the cigenvalues for
Reyrelds numbers as high as Re = 10°. The calculation of tic cigenfunctions and expansion
coel.aents, however, stll suffers from problems with large numbers caused by the exponential
behavier of trigonometric and Bessel functions of large complex arguments  Work is conducted to
arcunivent these problems by proper scaling.

7. Summary

We have developed a new analyucal formulation to obtain the hquid moments in the hncar
approximation by solving 3 single partial differential cquation for the axial velocity. This equanon
can be osolved by standard spectral methods or by use of expansions in spatal cigenfuncions. T
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contrast to earlier work,’ we obtain the eigenfunctions in closed form, and the eigenvalues are
governed by a closed-ferm characternistic equation. Qur formulation reveals the structure of the
eigenvalue spectrum and permits direct calculation of the eigenvalues without costly lookup tables.
The computer time {or obtaining the spatial cigentunciions is of the order of seconds and hence negli-
gible. The calculation of the expansion coefficients requires essentially the time for solving an alge-
braic system with 3¥ complex unknowns, where N depends on the desired accuracy and increases
with the Reynolds number. The computatonal efficiency of the spatial cigenfunction expansion is
comparable to the spectral Navier-Stokes solver of Herbert and Li We expect highcer efficiency
from solving for the axial velocity by standard spectral methods.
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